• 제목/요약/키워드: ablation depth

검색결과 64건 처리시간 0.021초

515nm 피코초 레이저를 이용한 구리 어블레이션 공정의 최대 가공율에 대한 이론적 분석 (Theoretical analysis on the maximum volume ablation rate for copper ablation with a 515nm picosecond laser)

  • 신동식;조용권;손현기;서정
    • 한국레이저가공학회지
    • /
    • 제16권2호
    • /
    • pp.1-6
    • /
    • 2013
  • Picosecond lasers are a very effective tool for micromachining metals, especially when high accuracy, high surface roughness and no heat affected zone are required. However, low productivity has been a limit to broadening the spectrum of their industrial applications. Recently it was reported that in the micromachining of copper with a 1064nm picosecond laser, there exist the optimal pulse energy and repetition rate to achieve the maximum volume ablation rate. In this paper, we used a 515nm picosecond laser, which is more efficient for micromachining copper in terms of laser energy absorption, to obtain its optimal pulse energy and repetition rate. Theoretical analysis based on the experimental data on copper ablation showed that using a 515nm picosecond laser instead of a 1064nm picosecond laser is more favorable in that the calculated threshold fluence is 75% lower and optical penetration depth is 50% deeper.

  • PDF

나노초 야그 레이저 어블레이션에 의한 실리콘의 폭발적 제거 현상 (Explosive mass-removal processes during high power nanosecond Nd-YAG laser ablation of silicon)

  • 정성호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.736-742
    • /
    • 2000
  • Mass removed from crystalline silicon samples during high power single-pulse laser ablation was studied by measuring the resulting crater morphology with a white light interferometric microscope. The volume and depth of the craters show a strong nonlinear change as the laser irradiance increases across a threshold value, that is, approximately $2.2{\times}10^{10}\;W/cm^2$. Time-resolved shadowgraph images of the ablation plume show the ejection of large particulates from the sample for laser irradiance above the threshold, with a time delay of about 300-400 nsec. The thickness of superheated liquid layer near the critical temperature was numerically estimated, considering the transformation of liquid metal into liquid dielectric near the critical state (i.e., induced transparency). The estimated thickness of the superheated layer at a delay time of 200 nsec agreed with the measured crater depths, suggesting that induced transparency promotes the formation of a deep superheated liquid layer which leads to an explosive boiling responsible for the sudden increase of crater volume and depth.

  • PDF

순수 알루미나와 탄소나노튜브 강화 알루미나 복합체의 극초단 펄스레이저 가공특성 비교 (Comparison of Ablation Characteristics of Carbon Nanotube reinforced Hybrid Al2O3 by using Ultrashort Pulse Laser)

  • 이준영;윤지욱;강명창;조성학
    • 한국기계가공학회지
    • /
    • 제12권6호
    • /
    • pp.23-29
    • /
    • 2013
  • In this paper, pure $I_{ph}$ and hybrid carbon nanotube reinforced $I_{ph}$ were sintered using the SPS(spark plasma sintering) method for high densification. A nanosecond laser (${\lambda}=1063nm$, ${\tau}P=10ns$) and a femtosecond laser (${\lambda}=1027nm$, ${\tau}P=380fs$) were installed on an optical system for the micromachining test. The ablation characteristics of the pure $I_{ph}$ and CNT/$I_{ph}$ composites, such as thermal effect and ablation depth, were investigated using FE-SEM and a confocal microscope device. Laser machining results for the two mating materials showed improved performances: CNT/$I_{ph}$ composites showed good surface morphology of hole drilling without a melting zone due to the composites' high thermal properties; also, the ablated depth of CNT/$I_{ph}$ was higher than that of pure $I_{ph}$.

알루미나 세라믹 소재의 초단파 레이저 어블레이션량 연구 (Ablation rate study using short pulsed laser subjected to Alumina medium)

  • 김경한;박진호
    • 한국레이저가공학회지
    • /
    • 제18권4호
    • /
    • pp.17-22
    • /
    • 2015
  • In this paper, ablation rate of $Al_2O_3$ ceramics by femtosecond laser fluence is derived with experimental method. The automatic three axis linear stage makes laser optics to move with high spatial resolution. With 10 times objective lens, minimal pattern width of $Al_2O_3$ is measured in the focal plane. Ablated surface area is shown as linear tendency increasing number of machining times with various laser power conditions. Machining times is most sensitive condition to control $Al_2O_3$ pattern width. Also, the linear increment of pattern width with laser power change is investigated. In high machining speed, the ablation volume rate is more linear with fluence because pulse overlap is minimized in this condition. Thermal effect to surrounding medium can be minimized and clean laser process without melting zone is possible in high machining speed. Ablation volume rate decelerates as increasing machining times and multiple machining times should be considered to achieve proper ablation width and depth.

액시머 레이저를 이용한 마이크로 렌즈 가공 모델링 및 시뮬레이션 (Micromachining Modelling and Simulation for Microlens Using Excimer Laser)

  • 최경현;배창현
    • 한국공작기계학회논문집
    • /
    • 제13권1호
    • /
    • pp.55-62
    • /
    • 2004
  • This paper addresses the method for figuring out the hole diameter on the mask containing the information about machining depth. With this mask e micro machining is carried out with a simple 2D movement of the mask. Based on e suggested method excimer laser ablation processes are modeled and determination of the optimal laser ablation conditions such as hole diameter, step size, mask movement velocity, etc. is completed. The excimer laser ablation simulation for creating 3D micro lens is carried out by employing determined ablation conditions to prove verification of the method. The results from simulation illustrated the average error of 140nm and e relative error of 2%.

엑사이머 레이저 어블레이션 가공에서의 빔변수의 영향 (Effects of Beam Parameters on Excimer Laser Ablation)

  • 방세윤
    • 한국정밀공학회지
    • /
    • 제22권7호
    • /
    • pp.38-46
    • /
    • 2005
  • In laser machining such as drilling with $CO_2$ or Nd:YAG laser, and etching or ablation with Excimer laser, one of the most important parameters affecting the machining is known to be beam characteristics. In this paper a numerical study is performed to investigate the effects of beam parameters, especially in the process of excimer laser ablation of polymers. Results of different beam conditions reveal that if the ablated depth is small compared to beam size the simple photochemical etching model is suitable to predict the etched shape, and that the importance of precise alignment becomes large as beam quality factor becomes larger.

INVAR 마스크 응용 반도체 기판 소재의 고체 UV 레이저 프로젝션 어블레이션 (DPSS UV Laser Projection Ablation of IC Substrates using an INVAR Mask)

  • 손현기;최한섭;박종식
    • 한국레이저가공학회지
    • /
    • 제15권4호
    • /
    • pp.16-19
    • /
    • 2012
  • Due to the fact that the dimensions of circuit lines of IC substrates have been forecast to reduce rapidly, engraving the circuit line patterns with laser has emerged as a promising alternative. To engrave circuit line patterns in an IC substrate, we used a projection ablation technique in which a metal (INVAR) mask and a DPSS UV laser instead of an excimer laser are used. Results showed that the circuit line patterns engraved in the IC substrate have a width of about 15um and a depth of $13{\mu}m$. This indicates that the projection ablation with a metal mask and a DPSS UV laser could feasibly replace the semi-additive process (SAP).

  • PDF

고출력 레이저 어블레이션에 의한 실리콘 가공시 발생하는 상폭발 현상에 관한 연구 (Study on the phase explosion phenomena during high power laser ablation of silicon)

  • 정성호
    • 한국레이저가공학회지
    • /
    • 제3권3호
    • /
    • pp.39-45
    • /
    • 2000
  • The volume and depth of the craters produced on silicon samples during high power laser ablation show a strong nonlinear change as the laser irradiance increases across a threshold value, approximately 2.2$\times$10$\^$10/ W/㎠. Time-resolved shadowgraph images of the ablation plume reveal the ejection of large particulates from the sample for laser irradiance above the threshold, with a time delay of about 300-400 ㎱. The numerically estimated thickness of the superheated liquid layer, considering the transformation of liquid metal into liquid dielectric near the critical state, agrees with the measured agrees with crater depths. It is suggested that a phase explosion of the deep superheated liquid layer near the critical state is responsible for the measured sudden increase of crater volume and the ejection of large particulates.

  • PDF

다층 PCB 기판의 미세 가공을 위한 UV레이저 어블레이션에 관한 연구 (A Study on UV Laser Ablation for Micromachining of PCB Type Substrate)

  • 장원석;김재구;윤경구;신보성;최두선
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.887-890
    • /
    • 1997
  • Recently micromachining using DPSSL(Diode Pumped Solid State Laser) with 3rd harmonic wavelength is actively studied in laser machining area. Micromachining using DPSSL have outstanding advantages as UV source comparing with excimer laser in various aspect such a maintenance cost, maskless machining, high repetition rate and so on. In this study micro-drilling of PCB type substrate which consists of Cu-PI-Cu layer was performed using DPSS Nd:YAG laser(355nm, wavelength) in vector scanning method. Experimental and numerical method(Matlab simulation, FEM) are used to optimize process parameter and control machining depth. The man mechanism of this process is laser ablation. It is known that there is large gap between energy threshold of copper and that of PI. Matlab simulation considering energy threshold of material is performed to effect of duplication of pulse and FEM thermal analysis is used to predict the ablation depth of copper. This study could be widely used in various laser micromachining including via hole microdrilling of PCB, and micromachining of semiconductor components, medical parts and printer nozzle and so on.

  • PDF

엑시머 레이저를 이용한 PMMA와 PET의 가공 (Excimer laser induced ablation of PMMA and PET)

  • 신동식;이제훈;서정;김도훈
    • 한국레이저가공학회지
    • /
    • 제6권1호
    • /
    • pp.33-40
    • /
    • 2003
  • The ablative decomposition mechanism of PMMA(polymethyl methacrylate) and PET(polyethylene terephthalate) with KrF excimer laser(λ : 248nm, pulse duration: 5㎱) is investigated. The UV/Vis spectrometer analysis showed that PMMA is a weak absorber and PET is a strong absorber at the wavelength of 248nm. The results(surface debris, melt, etch depth, etching shape) from drilling and direct writing experiments imply that ablation mechanism of PMMA is dominated by photothermal process, while that of PET is dominated by photochemical process.

  • PDF