• Title/Summary/Keyword: a-priori information model

Search Result 96, Processing Time 0.025 seconds

Analysis on the upper bound of strong Roman-domination in grid networks (그리드 네트워크의 강한 Roman 지배수 상계에 대한 해석)

  • Lee, Hoon;Sohn, Moo Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.8
    • /
    • pp.1114-1122
    • /
    • 2018
  • In this paper, we propose a theoretical framework for provisioning marginal resources in wired and wireless computer networks which include Internet. In more detail, we propose a mathematical model for the upper bounds of marginal capacity in grid networks, where the resource is designed a priori by normal traffic estimation and marginal resource is prepared for unexpected events such as natural disasters and abrupt flash crowd in public affairs. To be specific, we propose a method to evaluate an upper bound for minimum marginal capacity for an arbitrary grid topology using the concept of a strong Roman domination number. To that purpose, we introduce a graph theory to model and analyze the characteristics of general grid structure networks. After that we propose a new tight upper bound for the strong Roman domination number. Via a numerical example, we show the validity of the proposition.

Acceptance Measure of Quality Improvement Information System among Long-term Care Workers: A Psychometric Assessment (장기요양인력의 질 향상 정보시스템 수용 측정도구: 신뢰타당도 평가)

  • Lee, Taehoon;Jung, Young-il;Kim, Hongsoo
    • Research in Community and Public Health Nursing
    • /
    • v.28 no.4
    • /
    • pp.513-523
    • /
    • 2017
  • Purpose: We evaluated the psychometric properties of a questionnaire on the acceptance of the quality improvement information system (QIIS) among long-term care workers (mostly nurses). Methods: The questionnaire composes of 21 preliminary questions with 5 domains based on the Technology Acceptance Model and related literature reviews. We developed a prototype web-based comprehensive resident assessment system, and collected data from 126 subjects at 75 long-term care facilities and hospitals, who used the system and responded to the questionnaire. A priori factor structure was developed using an exploratory factor analysis and validated by a confirmatory factor analysis; its reliability was also evaluated. Results: A total of 16 items were yielded, and 5 factors were extracted from the explanatory factor analysis: Usage Intention, Perceived Usefulness, Perceived Ease of Use, Social Influence, and Innovative Characteristics. The five-factor structure model had a good fit (Tucker-Lewis index [TLI]=.976; comparative fit index [CFI]=.969; standardized root mean squared residual [SRMR]=.052; root mean square error of approximation [RMSEA]=.048), and the items were internally consistent(Cronbach's ${\alpha}=.91$). Conclusion: The questionnaire was valid and reliable to measure the technology acceptance of QIIS among long-term care workers, using the prototype.

Context Prediction Using Right and Wrong Patterns to Improve Sequential Matching Performance for More Accurate Dynamic Context-Aware Recommendation (보다 정확한 동적 상황인식 추천을 위해 정확 및 오류 패턴을 활용하여 순차적 매칭 성능이 개선된 상황 예측 방법)

  • Kwon, Oh-Byung
    • Asia pacific journal of information systems
    • /
    • v.19 no.3
    • /
    • pp.51-67
    • /
    • 2009
  • Developing an agile recommender system for nomadic users has been regarded as a promising application in mobile and ubiquitous settings. To increase the quality of personalized recommendation in terms of accuracy and elapsed time, estimating future context of the user in a correct way is highly crucial. Traditionally, time series analysis and Makovian process have been adopted for such forecasting. However, these methods are not adequate in predicting context data, only because most of context data are represented as nominal scale. To resolve these limitations, the alignment-prediction algorithm has been suggested for context prediction, especially for future context from the low-level context. Recently, an ontological approach has been proposed for guided context prediction without context history. However, due to variety of context information, acquiring sufficient context prediction knowledge a priori is not easy in most of service domains. Hence, the purpose of this paper is to propose a novel context prediction methodology, which does not require a priori knowledge, and to increase accuracy and decrease elapsed time for service response. To do so, we have newly developed pattern-based context prediction approach. First of ail, a set of individual rules is derived from each context attribute using context history. Then a pattern consisted of results from reasoning individual rules, is developed for pattern learning. If at least one context property matches, say R, then regard the pattern as right. If the pattern is new, add right pattern, set the value of mismatched properties = 0, freq = 1 and w(R, 1). Otherwise, increase the frequency of the matched right pattern by 1 and then set w(R,freq). After finishing training, if the frequency is greater than a threshold value, then save the right pattern in knowledge base. On the other hand, if at least one context property matches, say W, then regard the pattern as wrong. If the pattern is new, modify the result into wrong answer, add right pattern, and set frequency to 1 and w(W, 1). Or, increase the matched wrong pattern's frequency by 1 and then set w(W, freq). After finishing training, if the frequency value is greater than a threshold level, then save the wrong pattern on the knowledge basis. Then, context prediction is performed with combinatorial rules as follows: first, identify current context. Second, find matched patterns from right patterns. If there is no pattern matched, then find a matching pattern from wrong patterns. If a matching pattern is not found, then choose one context property whose predictability is higher than that of any other properties. To show the feasibility of the methodology proposed in this paper, we collected actual context history from the travelers who had visited the largest amusement park in Korea. As a result, 400 context records were collected in 2009. Then we randomly selected 70% of the records as training data. The rest were selected as testing data. To examine the performance of the methodology, prediction accuracy and elapsed time were chosen as measures. We compared the performance with case-based reasoning and voting methods. Through a simulation test, we conclude that our methodology is clearly better than CBR and voting methods in terms of accuracy and elapsed time. This shows that the methodology is relatively valid and scalable. As a second round of the experiment, we compared a full model to a partial model. A full model indicates that right and wrong patterns are used for reasoning the future context. On the other hand, a partial model means that the reasoning is performed only with right patterns, which is generally adopted in the legacy alignment-prediction method. It turned out that a full model is better than a partial model in terms of the accuracy while partial model is better when considering elapsed time. As a last experiment, we took into our consideration potential privacy problems that might arise among the users. To mediate such concern, we excluded such context properties as date of tour and user profiles such as gender and age. The outcome shows that preserving privacy is endurable. Contributions of this paper are as follows: First, academically, we have improved sequential matching methods to predict accuracy and service time by considering individual rules of each context property and learning from wrong patterns. Second, the proposed method is found to be quite effective for privacy preserving applications, which are frequently required by B2C context-aware services; the privacy preserving system applying the proposed method successfully can also decrease elapsed time. Hence, the method is very practical in establishing privacy preserving context-aware services. Our future research issues taking into account some limitations in this paper can be summarized as follows. First, user acceptance or usability will be tested with actual users in order to prove the value of the prototype system. Second, we will apply the proposed method to more general application domains as this paper focused on tourism in amusement park.

Investigation of Indicator Kriging for Evaluating Proper Rock Mass Classification based on Electrical Resistivity and RMR Correlation Analysis (RMR과 전기비저항의 상관성 해석에 기초하여 지시크리깅을 적용한 최적 암반 분류 기법 고찰)

  • Lee, Kyung-Ju;Ha, Hee-Sang;Ko, Kwang-Buem;Kim, Ji-Soo
    • Tunnel and Underground Space
    • /
    • v.19 no.5
    • /
    • pp.407-420
    • /
    • 2009
  • In this study geostatistical technique using indicator kriging was performed to evaluate the optimal rock mass classification by integrating the various geophysical information such as borehole data and geophysical data. To get the optimal kriging result, it is necessary to devise the suitable technique to integrate the hard (borehole) and soft (geophysical) data effectively. Also, the model parameters of the variogram must be determined as a priori procedure. Iterative non-linear inversion method was implemented to determine the model parameters of theoretical variogram. To verify the algorithm, behaviour of object function and precision of convergence were investigated, revealing that gradient of the range is extremely small. This algorithm for the field data was applied to a mountainous area planned for a large-scale tunneling construction. As for a soft data, resistivity information from AMT survey is incorporated with RMR information from borehole data, a sort of hard data. Finally, RMR profiles were constructed and attempted to be interpreted at the tunnel elevation and the upper 1D level.

Identification of Substructure Model using Measured Response Data (계측 거동 데이터를 이용한 부분구조 모델의 식별)

  • Oh, Seong-Ho;Lee, Sang-Min;Shin, Soobong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.137-145
    • /
    • 2004
  • The paper provides a methodology of identifying a substructure model when sectional and material properties of the structure are not the a priori information. In defining a substructure model, it is required that structural responses be consistent with the actual behavior of the part of the structure. Substructure model is identified by estimating boundary spring constants and stiffness properties of the substructure. Static and modal system identification methods have been applied using responses measured at limited locations within the substructure. Simulation studies for static and dynamic responses have been carried. The results and associated problems are discussed in the paper. The procedure has been also applied to an actual multi-span plate-girder Gerber-type bridge with dynamic responses obtained from a moving truck test and construction blasting vibrations.

Map-Building and Position Estimation based on Multi-Sensor Fusion for Mobile Robot Navigation in an Unknown Environment (이동로봇의 자율주행을 위한 다중센서융합기반의 지도작성 및 위치추정)

  • Jin, Tae-Seok;Lee, Min-Jung;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.434-443
    • /
    • 2007
  • Presently, the exploration of an unknown environment is an important task for thee new generation of mobile service robots and mobile robots are navigated by means of a number of methods, using navigating systems such as the sonar-sensing system or the visual-sensing system. To fully utilize the strengths of both the sonar and visual sensing systems. This paper presents a technique for localization of a mobile robot using fusion data of multi-ultrasonic sensors and vision system. The mobile robot is designed for operating in a well-structured environment that can be represented by planes, edges, comers and cylinders in the view of structural features. In the case of ultrasonic sensors, these features have the range information in the form of the arc of a circle that is generally named as RCD(Region of Constant Depth). Localization is the continual provision of a knowledge of position which is deduced from it's a priori position estimation. The environment of a robot is modeled into a two dimensional grid map. we defines a vision-based environment recognition, phisically-based sonar sensor model and employs an extended Kalman filter to estimate position of the robot. The performance and simplicity of the approach is demonstrated with the results produced by sets of experiments using a mobile robot.

A Muti-Resolution Approach to Restaurant Named Entity Recognition in Korean Web

  • Kang, Bo-Yeong;Kim, Dae-Won
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.277-284
    • /
    • 2012
  • Named entity recognition (NER) technique can play a crucial role in extracting information from the web. While NER systems with relatively high performances have been developed based on careful manipulation of terms with a statistical model, term mismatches often degrade the performance of such systems because the strings of all the candidate entities are not known a priori. Despite the importance of lexical-level term mismatches for NER systems, however, most NER approaches developed to date utilize only the term string itself and simple term-level features, and do not exploit the semantic features of terms which can handle the variations of terms effectively. As a solution to this problem, here we propose to match the semantic concepts of term units in restaurant named entities (NEs), where these units are automatically generated from multiple resolutions of a semantic tree. As a test experiment, we applied our restaurant NER scheme to 49,153 nouns in Korean restaurant web pages. Our scheme achieved an average accuracy of 87.89% when applied to test data, which was considerably better than the 78.70% accuracy obtained using the baseline system.

Automatic Electronic Cleansing in Computed Tomography Colonography Images using Domain Knowledge

  • Manjunath, KN;Siddalingaswamy, PC;Prabhu, GK
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8351-8358
    • /
    • 2016
  • Electronic cleansing is an image post processing technique in which the tagged colonic content is subtracted from colon using CTC images. There are post processing artefacts, like: 1) soft tissue degradation; 2) incomplete cleansing; 3) misclassification of polyp due to pseudo enhanced voxels; and 4) pseudo soft tissue structures. The objective of the study was to subtract the tagged colonic content without losing the soft tissue structures. This paper proposes a novel adaptive method to solve the first three problems using a multi-step algorithm. It uses a new edge model-based method which involves colon segmentation, priori information of Hounsfield units (HU) of different colonic contents at specific tube voltages, subtracting the tagging materials, restoring the soft tissue structures based on selective HU, removing boundary between air-contrast, and applying a filter to clean minute particles due to improperly tagged endoluminal fluids which appear as noise. The main finding of the study was submerged soft tissue structures were absolutely preserved and the pseudo enhanced intensities were corrected without any artifact. The method was implemented with multithreading for parallel processing in a high performance computer. The technique was applied on a fecal tagged dataset (30 patients) where the tagging agent was not completely removed from colon. The results were then qualitatively validated by radiologists for any image processing artifacts.

An Adaptive Classification Model Using Incremental Training Fuzzy Neural Networks (점증적 학습 퍼지 신경망을 이용한 적응 분류 모델)

  • Rhee, Hyun-Sook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.736-741
    • /
    • 2006
  • The design of a classification system generally involves data acquisition module, learning module and decision module, considering their functions and it is often an important component of intelligent systems. The learning module provides a priori information and it has been playing a key role for the classification. The conventional learning techniques for classification are based on a winner take all fashion which does not reflect the description of real data where boundarues might be fuzzy Moreover they need all data for the learning of its problem domain. Generally, in many practical applications, it is not possible to prepare them at a time. In this paper, we design an adaptive classification model using incremental training fuzzy neural networks, FNN-I. To have a more useful information, it introduces the representation and membership degree by fuzzy theory. And it provides an incremental learning algorithm for continuously gathered data. We present tie experimental results on computer virus data. They show that the proposed system can learn incrementally and classify new viruses effectively.

A "deformable section" model for the dynamics of suspension bridges -Part II: Nonlinear analysis and large amplitude oscillations

  • Sepe, Vincenzo;Diaferio, Mariella;Augusti, Giuliano
    • Wind and Structures
    • /
    • v.6 no.6
    • /
    • pp.451-470
    • /
    • 2003
  • The classical two-degree-of-freedom (2-d-o-f) "sectional model" is of common use to study the dynamics of suspension bridges. It takes into account the first pair of vertical and torsional modes of the bridge and describes well global oscillations caused by wind actions on the deck, yielding very useful information on the overall behaviour and the aerodynamic and aeroelastic response; however, it does not consider relative oscillations between main cables and deck. On the contrary, the 4-d-o-f model described in the two Parts of this paper includes longitudinal deformability of the hangers (assumed linear elastic in tension and unable to react in compression) and thus allows to take into account not only global oscillations, but also relative oscillations between main cables and deck. In particular, when the hangers go slack, large nonlinear oscillations are possible; if the hangers remain taut, the oscillations remain small and essentially linear: the latter behaviour has been the specific object of Part I (Sepe and Augusti 2001), while the present Part II investigates the nonlinear behaviour (coexisting large and/or small amplitude oscillations) under harmonic actions on the cables and/or on the deck, such as might be generated by vortex shedding. Because of the discontinuities and strong nonlinearity of the governing equations, the response has been investigated numerically. The results obtained for sample values of mechanical and forcing parameters seems to confirm that relative oscillations cannot a priori be excluded for very long span bridges under wind-induced loads, and they can stimulate a discussion on the actual possibility of such phenomena.