• Title/Summary/Keyword: a-Plane GaN

Search Result 111, Processing Time 0.063 seconds

Formation of Ohmic Contact to AlGaN/GaN Heterostructure on Sapphire

  • Kim, Zin-Sig;Ahn, Hokyun;Lim, Jong-Won;Nam, Eunsoo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.292-292
    • /
    • 2014
  • Wide band gap semiconductors, such as III-nitrides (GaN, AlN, InN, and their alloys), SiC, and diamond are expected to play an important role in the next-generation electronic devices. Specifically, GaN-based high electron mobility transistors (HEMTs) have been targeted for high power, high frequency, and high temperature operation electronic devices for mobile communication systems, radars, and power electronics because of their high critical breakdown fields, high saturation velocities, and high thermal conductivities. For the stable operation, high power, high frequency and high breakdown voltage and high current density, the fabrication methods have to be optimized with considerable attention. In this study, low ohmic contact resistance and smooth surface morphology to AlGaN/GaN on 2 inch c-plane sapphire substrate has been obtained with stepwise annealing at three different temperatures. The metallization was performed under deposition of a composite metal layer of Ti/Al/Ni/Au with thickness. After multi-layer metal stacking, rapid thermal annealing (RTA) process was applied with stepwise annealing temperature program profile. As results, we obtained a minimum specific contact resistance of $1.6{\times}10^{-7}{\Omega}cm2$.

  • PDF

Investigation of InN nanograins grown by hydride vapor phase epitaxy (수소 화물 기상 증착법을 이용한 InN 나노 알갱이 성장에 관한 연구)

  • Jean, Jai-Weon;Lee, Sang-Hwa;Kim, Chin-Kyo
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.6
    • /
    • pp.479-482
    • /
    • 2007
  • InN nanograins were directly grown on $0.3^{\circ}$-miscut (toward M-plane) c-plane sapphire substrates by hydride vapor phase epitaxy (HVPE) and their growth characteristics were investigated by utilizing x-ray scattering. Depending on the various growth parameters, the formation of InN was sensitively influenced. Six samples were grown by changing HCl flow rate, the substrate temperature and Ga/In source zone temperature. All the samples were grown on unintentionally $NH_3-pretreated$ sapphire substrates. By increasing the flow rate of HCl from 10 sccm to 20 sccm, the formation of GaN grains with different orientations was observed. On the other hand, when the substrate temperature was raised from $680^{\circ}C$ to $760^{\circ}C$, the increased substrate temperature dramatically suppressed the formation of InN. A similar behavior was observed for the samples grown with different source zone temperatures. By decreasing the source zone temperature from $460^{\circ}C$ to $420^{\circ}C$, a similar behavior was observed.

MOCVD growth of GaN and InGaN in a rotating-disk reactor

  • 문용태;김동준;김준형
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.109-109
    • /
    • 1998
  • 최근 들어 MOCVD 법으로 성장시킨 GaN, InGaN, AIGaN를 이용한 광소자 ( (LED, LD)와 전자소자(FET, MODFET)에 대한 관심이 고조되면서, MOCVD 법 을 이용한 GaN 중심의 질화물 반도체 성장에 관심이 집중되고 있다. 금번 실험에 사용된 MOCVD 장비는 수직형 MOCVD 장비이다. 특히, wafer c carner를 1$\alpha$)() rpm이상의 고속으로 회전시킬 수 있는 장치로서 원료 가스의 반웅 기 내에서의 흐름을 균일하게 하여 uniformity가 높은 질화물 반도체를 성장시킬 수 있다 .. GaN 에피충은 c-plane 사파이어를 기판으로 하여 11 00 "C 이상의 고온 에서 수소를 이용하여 기판을 cleaning하고, 500 "C 부근에서 핵생성충올 성장시 킨 후 1050 "C에서 trimethylgallium(TMGa)과 NI-h를 이용하여 성장시켰다. n n -GaN를 성장시키기 위해서는 SiH4을 사용하였으며, InGaN의 경우는 t trimethylindium(TMIn)을 In원 료 가스로 하여 635 - 725 "C 범 위 에 서 성 장시 켰 다. 성 장된 undoped GaN, n-GaN, InGaN는 X -ray di잔raction(XRD), H떠l m measurement, Photoluminescence(PU동올 이용하여 결정성과 전기적 및 광학적 특성올 고찰하였다 .. 2ttm 두께로 성장된 undoped G값V박막의 경우 Hall 측정결과 6 6 X lOI6/e며 정도의 낮은 도핑 농도를 보였으며, V!lII ratio(2500 - 5000)증가에 따라 결정성이 향상됨을 GaN (102)면의 X -ray e -rocking분석올 통하여 확인하 였다 .. n-GaN의 경우 SiH4양올 3 - 13 sccm으로 증가시킴에 따라 n -type 도명농 도가 선형적으로 증가하였고, 1017/c며 범위 내로 도평이 된 경우 상온에서 300 e마 N Ns 이상의 high mobility를 얻올 수 있었다 .. PL 관측 결과로부터 Si 도핑으로 인 하여 GaN bandedge emission이 강화됨을 알 수 있었다 .. InGaN 박막의 경우 성 장온도를 낮춤에 따라서 m의 양을 증가시킬 수 있었다. 또한 유량비(TMIn I T TMGa)가 1에 가까운 경 우에서도 온도를 635 "C 정도로 낮훈 경우 410 nm정도에 서 PL bandedge peak올 얻을 수 있었으며, 이 때의 반치폭은 50 meV정도의 낮 은 값을 보였다. 반치폭은 50 meV정도의 낮 은 값을 보였다.

  • PDF

Effect of Temperature Gradient on the Characteristics of GaN Nanorods Grown on R-plane Sapphire Substrates (기판 주변 반응 기체와 기판 사이의 온도 차이에 따른 r-면 사파이어 기판에 성장된 길화갈륨 나노 막대의 특성 변화 연구)

  • Shin, Bo-A;Kim, Chin-Kyo
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.1
    • /
    • pp.44-48
    • /
    • 2009
  • The effect of temperature gradient between the substrate and ambient gas on the structural characteristics of GaN nanorods grown on r-plane sapphire substrates by hydride vapor phase epitaxy was investigated. The density, diameter, and length strongly depended on the tempearture gradient. In addition, the cross-sectional shape of the nanorrods at the end of growth was found to be more dependedent on the temperature of a substrate itself than the temperature gradient.

Fabrication and Characterization of InGaN/GaN LED structures grown on selectively wet-etched porous GaN template layer

  • Beck, Seol;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.124-124
    • /
    • 2010
  • Much interest has been focused on InGaN-based materials and their quantum structures due to their optoelectronics applications such as light emitting diode (LED) and photovoltaic devices, because of its high thermal conductivity, high optical efficiency, and direct wide band gap, in spite of their high density of threading dislocations. Build-in internal field-induced quantum-confined Stark effect in InGaN/GaN quantum well LED structures results in a spatial separation of electrons and holes, which leads to a reduction of radiative recombination rate. Therefore, many growth techniques have been developed by utilizing lateral over-growth mode or by inserting additional layers such as patterned layer and superlattices for reducing threading dislocations and internal fields. In this work, we investigated various characteristics of InGaN multiple quantum wells (MQWs) LED structures grown on selectively wet-etched porous (SWEP) GaN template layer and compared with those grown on non-porous GaN template layer over c-plane sapphire substrates. From the surface morphology measured by atomic force microscope, high resolution X-ray diffraction analysis, low temperature photoluminescence (PL) and PL excitation measurements, good structural and optical properties were observed on both LED structures. However, InGaN MQWs LED structures grown on SWEP GaN template layer show relatively low In composition, thin well width, and blue shift of PL spectra on MQW emission. These results were explained by rough surface of template layer, reduction of residual compressive stress, and less piezoelectric field on MQWs by utilizing SWEP GaN template layer. Better electrical properties were also observed for InGaN MQWs on SWEP GaN template layer, specially at reverse operating condition for I-V measurements.

  • PDF

Growth and Properties of GaN by Vapor Transport Epitaxy (Vapor Transport Epitaxy에 의한 GaN의 성장과 특성)

  • Lee, Jae-Bum;Kim, Seon-Tai
    • Korean Journal of Materials Research
    • /
    • v.16 no.8
    • /
    • pp.479-484
    • /
    • 2006
  • Highly c-axis oriented poly-crystalline GaN with a dimension of $1{\sim}3\;{\mu}m$ was deposited on $c-Al_2O_3$ substrate by vapor transport epitaxy (VTE) method at the temperature range of $900{\sim}1150^{\circ}C$. XRD intensities from (00'2) plane of grown GaNs were increased with reaction conditions which indicate the improvement of the crystal quality. In the PL spectra measured at 10 K, the spectrum composed with the neutral-donor bound exciton-related emission at 3.47 eV, crystal defect-related emission band at 3.42 eV and with its phonon replicas. The fact that intensity of $I_2$ were increased and FWHM were decreased with growth conditions means that the quality of GaN crystals were improved. With this simple VTE technology, we confirm that the GaNs were simply deposited on sapphire substrate and crystal quality related to optical properties of GaN grown by VTE were relatively good. PL emission without deep level emission in spite of polycrystalline structure can be applicable to the fabrication of large area and low cost optical devices using poly-GaN grown by VTE.

GaN Film Growth Characteristics Comparison in according to the Type of Buffer Layers on PSS (PSS 상 버퍼층 종류에 따른 GaN 박막 성장 특성 비교)

  • Lee, Chang-Min;Kang, Byung Hoon;Kim, Dae-Sik;Byun, Dongjin
    • Korean Journal of Materials Research
    • /
    • v.24 no.12
    • /
    • pp.645-651
    • /
    • 2014
  • GaN is most commonly used to make LED elements. But, due to differences of the thermal expansion coefficient and lattice mismatch with sapphire, dislocations have occurred at about $109{\sim}1010/cm^2$. Generally, a low temperature GaN buffer layer is used between the GaN layer and the sapphire substrate in order to reduce the dislocation density and improve the characteristics of the thin film, and thus to increase the efficiency of the LED. Further, patterned sapphire substrate (PSS) are applied to improve the light extraction efficiency. In this experiment, using an AlN buffer layer on PSS in place of the GaN buffer layer that is used mainly to improve the properties of the GaN film, light extraction efficiency and overall properties of the thin film are improved at the same time. The AlN buffer layer was deposited by using a sputter and the AlN buffer layer thickness was determined to be 25 nm through XRD analysis after growing the GaN film at $1070^{\circ}C$ on the AlN buffer CPSS (C-plane Patterned Sapphire Substrate, AlN buffer 25 nm, 100 nm, 200 nm, 300 nm). The GaN film layer formed by applying a 2 step epitaxial lateral overgrowth (ELOG) process, and by changing temperatures ($1020{\sim}1070^{\circ}C$) and pressures (85~300 Torr). To confirm the surface morphology, we used SEM, AFM, and optical microscopy. To analyze the properties (dislocation density and crystallinity) of a thin film, we used HR-XRD and Cathodoluminescence.