• 제목/요약/키워드: a-C:Ti

검색결과 3,740건 처리시간 0.035초

AlSiMg/TiC 복합 용사 피막 : 분말제조 및 피막 특성(I) (Thermal Sprayed AlSiMg/TiC Composite Coatings : Fabrication of Powder and Characteristics of Coatings (I))

  • 양병모;변응선;박경채
    • Journal of Welding and Joining
    • /
    • 제18권5호
    • /
    • pp.98-104
    • /
    • 2000
  • Aluminum alloys are being employed in automobile parts as strive to reduce overall vehicle weight to meet demands for improved fuel economy and reduction in vehicle emissions. Al-based composites reinforced with ceramic ($Al_2O_3,\;SiC,\;TiC\;and\;B_4C$) applications in a variety of components in automotive engines, such as liners, where the tribological properties of the material are important. In this study, Al-base composites reinforced with TiC particle powders has been developed for producing plasma spray coatings. The composite plasma spray powders were prepared Al-13Si-3Mg(wt%) alloy with TiC(40, 60 and 80wt%) particles ($0.2~5{\mu}textrm{m}$) by drum type ball milling. The composite powders ($36~76{\mu}textrm{m}$) were sprayed with plasma torch. Plasma sprayed coatings were heat-treated at $500^{\circ}C$ for 3 hours. The wear resistances of the plasma sprayed coatings were found to decrease with increasing TiC content and improved with heat treatment. AlSiMg-40% TiC heat-treated coatings were showed the best wear resistance in this study.

  • PDF

Effect of $Mo_2C$ Content on the Microstructure and Properties of Ti(CN)-$Mo_2C$ Ceramics

  • Park, Dong-Soo;Lee, Yang-Doo;Taejoo Jung
    • The Korean Journal of Ceramics
    • /
    • 제5권3호
    • /
    • pp.230-234
    • /
    • 1999
  • Ti(CN)-0.3mole% $Mo_2C$ ceramics were prepared by pressureless sintering. $Mo_2C$ dissolved in Ti(CN) more easily in a nitrogen environment than in the other environment because nitrogen forced Mo to form a solid solution, (Ti, No)(C, N). A "core-rim" structure developed within the grains. The boundary between the "core" and the rim was delineated by thermal etching in the sample with more than 2 mole% $Mo_2C$. The rim thickness and the grain size decreased as the $Mo_2C$ content increased. The hardness and the flexural strength showed maxima of 18.2 GPa and 1.23 GPa, respectively when the $Mo_2C$ content was 2 mole%. The post-sintering heat treatments improved the properties.oved the properties.

  • PDF

C-N코팅 스퍼기어의 마찰 . 마모 특성에 관한 연구 (A Study on the Friction and Wear Characteristics of C-N Coated Spur Gear)

  • 노룡;류성기
    • Tribology and Lubricants
    • /
    • 제20권5호
    • /
    • pp.272-277
    • /
    • 2004
  • This study deals with the friction and wear characteristics of C-N coated spur gear. The PSII apparatus was built and a SCM415 test piece and test gear with steel substrate was treated with carbon nitrogen by this apparatus. The composition and structure of the surface layer were analyzed and compared with that of PVD coated TiN layer. It was found that both of friction coefficient of C-N coating and TiN coating decreased with increasing load, however, C-N coating showed relatively lower friction coefficient than that of TiN coating. We was investigated the effect of C-N coating on hardness, friction and wear. The TiN coated gear showed a more serious friction phenomena than that of C-N coated gear. It was considered that coating of TiN, which was conducted at a vacuum chamber at about 500$^{\circ}C$, results in a tempering of base material that causes microstructural change, which in turn resulted in decreasing of hardness. The C-N coated gear and pinion had higher wear resistance that of TiN coated gear and pinion. C-N coating significantly improved the friction and wear resistance of the gear.

$Bi_4Ti_3O_{12}{\cdot}nBaTiO_3(n=1&2)$ 박막에서 $Bi_4Ti_3O_{12}$ 에 대한 $BaTiO_3$의 복합효과 (The Complexing Effect of $BaTiO_3\;for\;Bi_4Ti_3O_{12}$ on Layered Perovskite $Bi_4Ti_3O_{12}{\cdot}nBaTiO_3(n=1&2)$ Thin Films)

  • 신정묵;고태경
    • 한국세라믹학회지
    • /
    • 제35권11호
    • /
    • pp.1130-1140
    • /
    • 1998
  • Thin films of $Bi_4Ti_3O_{12}\;nBaTiO_3(n=1&2)$ were prepared using sols erived Ba-Bi-Ti complex alkoxides. The sols were spin-cast onto $Pt/Ti/SiO_2/Si$ substrates and followed by pyrolysis for 1 hr at $620^{\circ}C,\;700^{\circ}C\;and\;750^{\circ}C$ In the thin films a pyrochlore phase seemed to be formed at a lower temperature and then tran-formed to the layered perovskite phase as the heating temperature increased. In the thin films pyrolyzed at formed to the layered perovskte phase as the heating temperature increased. In the films pyrolyzed at $750^{\circ}C$ the amount of $Bi_4Ti_3O_{12}{\cdot}BaTiO_3$ reached to 94% while $Bi_4Ti_3O_{12}{\cdot}BaTiO_3$ was 77% in composition. This result shows that the formation of the layered pervoskite phase becomes difficult as the amount of complexing $BaTiO_3$ increases. The microstructures and the electrical properties of the thin films were gen-erally improved with the incease of the heating temperature. However the presence of the pyrochlore phase could not be removed effectively. Our study showed that the electrical properties of $Bi_4Ti_3O_{12}{\cdot}BaTiO_3$ were pronouncedly improved with complexing with BaTiO3 when compared to those of $Bi_4Ti_3O_{12}$ while the presence of the pyrochlore phase was detrimental to the those of $Bi_4Ti_3O_{12}{\cdot}2BaTiO_3$.

  • PDF

Si 및 SrTiO3 기판 위에 증착된 Bi4Ti3O12 박막의 결정구조 및 배향에 따른 강유전 특성 (Ferroelectric Properties of Bi4Ti3O12 Thin Films Deposited on Si and SrTiO3 Substrates According to Crystal Structure and Orientation)

  • 이명복
    • 전기학회논문지
    • /
    • 제67권4호
    • /
    • pp.543-548
    • /
    • 2018
  • Ferroelectric $Bi_4Ti_3O_{12}$ films were deposited on $SrTiO_3(100)$ and Si(100) substrate by using conductive $SrRuO_3$ films as underlayer, and their ferroelectric and electrical properties were investigated depending on crystal structure and orientation. C-axis oriented $Bi_4Ti_3O_{12}$ films were grown on well lattice-matched pseudo-cubic $SrRuO_3$ films deposited on $SrTiO_3(100)$ substrate, while random-oriented polycrystalline $Bi_4Ti_3O_{12}$ films were grown on $SrRuO_3$ films deposited on Si(100) substrate. The random-oriented polycrystalline film showed a good ferroelectric hysteresis property with remanent polarization ($P_r$) of $9.4{\mu}C/cm^2$ and coercive field ($E_c$) of 84.9 kV/cm, while the c-axis oriented film showed $P_r=0.64{\mu}C/cm^2$ and $E_c=47kV/cm$ in polarizaion vs electric field curve. The c-axis oriented $Bi_4Ti_3O_{12}$ film showed a dielectric constant of about 150 and lower thickness dependence in dielectric constant compared to the random-oriented film. Furthermore, the c-axis oriented $Bi_4Ti_3O_{12}$ film showed leakage current lower than that of the polycrystalline film. The difference of ferroelectric properties in two films was explained from the viewpoint of depolarization effect due to orientation of spontaneous polarization and layered crystal structure of bismuth-base ferroelectric oxide.

코딩-열분해법에 의해 제조한 BaTiO$_3 $ 박막의 결정 성장을 위한 낮은 산소 분압에서의 열처리 (Annealing under low oxygen partial pressure for crystal growth of BaTiO$_3 $thin films prepared by coating-pyrolysis process)

  • 김승원
    • 한국결정성장학회지
    • /
    • 제10권2호
    • /
    • pp.111-115
    • /
    • 2000
  • Ba과 Ti의 금속 유기 화합물을 이용하여 (100) $SrTiO_3$ 기판 위에 $BaTIO_3$ 박막을 코팅-열분해법으로 제조하였다. $450^{\circ}C$에서 사전 열처리한 비정질상의 박막은 $2\times 10^{-4}$ atm으로 조정된 산소 분압 하에서 $700^{\circ}C$ 이상의 온도로 열처리함으로써 결정화되었다. $800^{\circ}C$ 이하에서 제조한 박막의 기판에 수직한 면의 격자상수는 cubic $BaTIO_3$의 a 값에 가까우면 $800^{\circ}C$ 이하에서 제조한 박막의 tetragonal $BaTIO_3$ 의 a 값에 가까 웠다. 박막과 기판의 정렬상태를 XRD $\beta$ scan과 pole-figure로 분석한 결과 $BaTIO_3$ 박막은 $SrTiO_3$ 기판과 에피택시 관계가 있었다. $800^{\circ}C$에서 열처리한 박막의 표면은 0.4${\mu}m$ 정도의 섬 형태의 입자로 구성되어 있었고 약 0.8$\mu\textrm{m}$의 두께를 가진 단면은 구형의 입자가 층을 이루고 있었다.

  • PDF

(Fe, TiH2, C) 혼합 분말로부터 제조된 Fe-30 wt% TiC 복합재료 분말의 소결 (Sintering of Fe-30 wt% TiC Composite Powders Fabricated from (Fe, TiH2, C) Powder Mixture)

  • 이병훈;김지순
    • 한국분말재료학회지
    • /
    • 제22권5호
    • /
    • pp.356-361
    • /
    • 2015
  • Fe-30 wt% TiC composite powders are fabricated by in situ reaction synthesis after planetary ball milling of (Fe, $TiH_2$, Carbon) powder mixture. Two sintering methods of a pressureless sintering and a spark-plasma sintering are tested to densify the Fe-30 wt% TiC composite powder compacts. Pressureless sintering is performed at 1100, 1200 and $1300^{\circ}C$ for 1-3 hours in a tube furnace under flowing argon gas atmosphere. Spark-plasma sintering is carried out under the following condition: sintering temperature of $1050^{\circ}C$, soaking time of 10 min, sintering pressure of 50 MPa, heating rate of $50^{\circ}C/min$, and in a vacuum of 0.1 Pa. The curves of shrinkage and its derivative (shrinkage rate) are obtained from the data stored automatically during sintering process. The densification behaviors are investigated from the observation of fracture surface and cross-section of the sintered compacts. The pressureless-sintered powder compacts are not densified even after sintering at $1300^{\circ}C$ for 3 h, which shows a relative denstiy of 66.9%. Spark-plasma sintering at $1050^{\circ}C$ for 10 min exhibits nearly full densification of 99.6% relative density under the sintering pressure of 50 MPa.

SiO2/TiO2 혼합입자 슬러리 SiC CMP의 재료제거율 모델링 (Material Removal Rate Modeling of SiO2/TiO2 Mixed-Abrasive Slurry CMP for SiC)

  • 이현섭
    • Tribology and Lubricants
    • /
    • 제39권2호
    • /
    • pp.72-75
    • /
    • 2023
  • Silicon carbide (SiC) is used as a substrate material for power semiconductors; however, SiC chemical mechanical polishing (CMP) requires considerable time owing to its chemical stability and high hardness. Therefore, researchers are attempting to increase the material removal rate (MRR) of SiC CMP using various methods. Mixed-abrasive CMP (MAS CMP) is one method of increasing the material removal efficiency of CMP by mixing two or more particles. The aim of this research is to study the mathematical modeling of the MRR of MAS CMP of SiC with SiO2 and TiO2 particles. With a total particle concentration of 32 wt, using 80-nm SiO2 particles and 25-nm TiO2 particles maximizes the MRR at 8 wt of the TiO2 particle concentration. In the case of 5 nm TiO2 particles, the MRR tends to increase with an increase in TiO2 concentration. In the case of particle size 10-25 nm TiO2, as the particle concentration increases, the MRR increases to a certain level and then decreases again. TiO2 particles of 25 nm or more continuously decreased MRR as the particle concentration increased. In the model proposed in this study, the MRR of MAS CMP of SiC increases linearly with changes in pressure and relative speed, which shows the same result as the Preston's equation. These results can contribute to the future design of MAS; however, the model needs to be verified and improved in future experiments.

급냉응고법에 의한 In-Situ 복합재료로서의 Al-10wt%Ti-4wt%Fe 합금 (II) (Al-10wt%Ti-4wt%F Alloys as In-situ Composites through Rapid Solidification(II))

  • 김혜성;정재필;권숙인;금동화
    • 한국재료학회지
    • /
    • 제8권12호
    • /
    • pp.1127-1132
    • /
    • 1998
  • 본 연구에서는 Al-10wt%Ti-4wt%Fe 복합재료를 in-situ공정으로 제조할 수 있는 가능성 및 2 원계 Al-10wt%Ti 복합재료의 낮은 기계적 성질(탄성계수, 상온 고온강도, 내마모특성 등)을 PM SiC/2124 복합재료 수준 흑은 그 이상으로 향상시킬 수 있는 가능성을 조사하였다. 제조된 Al-10wt%Ti-4wt%Fe 합금은 불연속 SiC 강화상으로 보강된 Al-기지 복합재료($SiC{w}$/2124)와 유사한 미세구조를 보여주었으며, 탄성계수 및 인장강도, 내마모성질 등의 기계적 특성이 2원계 Al-10%Ti 합금각 비교해 현저하게 향상되었음이 관찰되었다. 위의 결과는 초정 $Al_3Ti$상 외에도 Fe 원소의 첨가를 통한 추가적인 $Al_{x}Fe$의 분산강화 효과에 기인한 것으로 해석된다.

  • PDF

SiC-$TB_2$ 복합체의 특성에 미치는 annealing의 영향 (Effect of Annealing on Properties of SiC-$TiB_2$ Composites)

  • 신용덕;주진영;고태헌;김영백
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1289-1290
    • /
    • 2007
  • The composites were fabricated 61Vo.% ${\beta}$-SiC and 39Vol.% $TiB_2$ powders with the liquid forming additives of 12wt% $Al_{2}O_{3}+Y_{2}O_{3}$ as a sintering aid by pressure or pressureless annealing at $1650^{\circ}C$ for 4 hours. The present study investigated the influence of annealed sintering on the microstructure and mechanical of SiC-$TiB_2$ electroconductmive ceramic composites. Reactions between SiC and transition metal $TiB_2$ were not observed in the microstructure and the phase analysis of the SiC-$TiB_2$ electroconductive ceramic composites. Phase analysis of SiC-$TiB_2$ composites by XRD revealed mostly of ${\alpha}$-SiC(6H), $TiB_2$, and In Situ YAG($Al_{5}Y_{3}O_{12}$). The relative density, the flexural strength, the Young's modulus showed the highest value of 86.69[%], 136.43[MPa], 52.82[GPa] for pressure annealed SiC-$TiB_2$ ceramic composites.

  • PDF