• Title/Summary/Keyword: a-C:Ti

Search Result 3,740, Processing Time 0.03 seconds

Formation of CVD-Cu Thin Films on Polyimide Substrate (Polyimide 기판을 이용한 CVD-Cu 박막 형성기술)

  • 조남인;임종설;설용태
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.1
    • /
    • pp.37-42
    • /
    • 2000
  • Copper thin films have been prepared by a metal organic chemical vapor deposition (MOCVD) technology on polyimide and TiN substrates. The Cu-MOCVD technology has advantages of the high deposition rate and the good step coverage compared with the conventional physical vapor deposition (PVD) technology in several industrial applications. The Cu films have been deposited with varying the experimental conditions of substrate temperatures and copper source vapor pressures. The films were annealed in a vacuum condition after the deposition, and the annealing effect on the electrical properties of the films was measured. The crystallinity and the microstructures of the films were observed by scanning electron microscopy (SEM), and the electrical resistivity was measured by 4-point probe. In the case of the Cu deposition on TiN substrate, the best electrical property of the films was measured for the samples prepared at 18$0^{\circ}C$. Very high deposition rate of the Cu film up to 250 nm/min was obtained on the polyimide substrate when the mixture of liquid and vapour precursor was used.

  • PDF

Nb-doping Effects on Ferroelectric and Piezoelectric Properties of Pb-free Bi0.5Na0.5 (비납계 Bi0.5Na0.5의 강유전 및 압전 특성에 미치는 Nb-doping 효과)

  • Yeo, Hong-Goo;Sung, Yeon-Soo;Song, Tae-Kwon;Cho, Jong-Ho;Jeong, Soon-Jong;Song, Jae-Sung;Kim, Myong-Ho
    • Korean Journal of Materials Research
    • /
    • v.16 no.11
    • /
    • pp.705-709
    • /
    • 2006
  • Nb was doped to Pb-free $(Bi_{0.5}Na_{0.5})TiO_3$ (BNT) by a solid state mixing process to form $(Bi_{0.5}Na_{0.5})Ti_{1-x}Nb_xO_3\;(x=0{\sim}0.05)$ (BNTNb) and its doping effects on ferroelectric and piezoelctric properties of BNT were investigated. The BNTNb solid solutions were formed up to x=0.01 with no apparent second phases while grain sizes decreased. As x increased, coercive field ($E_c$) and mechanical quality factor ($Q_m$) decreased but piezoelectric constant ($d_{33}$) increased, which indicates Nb acts as a donor for BNT.

Geochemical Studies on Petrogenesis of the Cretaceous Myeongseongsan Granite in the Northwestern Gyeonggi Massif (경기육괴 북서부에 분포하는 백악기 명성산 화강암의 성인에 대한 지화학적 연구)

  • Yi, Eun Ji;Park, Ha Eun;Park, Young-Rok
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.327-339
    • /
    • 2017
  • The Cretaceous Myeongseongsan Granite in the northwestern Gyeonggi Massif consists of a major pale pink-colored biotite monzogranite and a minor white-colored biotite alkaligranite. Low Sr and high Ba concentrations, negative Eu-anomalies in REE plot, negative Sr anomalies in spider diagram, a negative correlation between Sr and Rb, and positive correlations between Sr and Ba and $Eu/Eu^*$ indicate that a fractional crystallization of both plagioclase and K-feldspar played a significant role during magma evolution. The Myeongseongsan Granite is plotted in I-& S-type granites on I, S, A-type granite classification scheme. While the biotite monzogranite is plotted in unfractionated I-& S-type granite, the biotite alkaligranite is plotted in fractionated I-& S-type granite, which indicates that the biotite alkaligranite is a more differentiated product. In order to elucidate the nature of the protoliths of the peraluminous Myeongseongsan magma, we plotted in $Al_2O_3/TiO_2$ vs. $CaO/Na_2O$ and Rb/Sr vs. Rb/Ba diagrams, and they suggest that the Myeongseongsan Granite was derived from clay-poor metagreywackes and meta-psammites or their igneous counterparts. Whole-rock zircon saturation temperature indicates that the Myeongseongsan magma was melted at $740-799^{\circ}C$.

Implementation of Parallel Processor for Sound Synthesis of Guitar (기타의 음 합성을 위한 병렬 프로세서 구현)

  • Choi, Ji-Won;Kim, Yong-Min;Cho, Sang-Jin;Kim, Jong-Myon;Chong, Ui-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.191-199
    • /
    • 2010
  • Physical modeling is a synthesis method of high quality sound which is similar to real sound for musical instruments. However, since physical modeling requires a lot of parameters to synthesize sound of a musical instrument, it prevents real-time processing for the musical instrument which supports a large number of sounds simultaneously. To solve this problem, this paper proposes a single instruction multiple data (SIMD) parallel processor that supports real-time processing of sound synthesis of guitar, a representative plucked string musical instrument. To control six strings of guitar, we used a SIMD parallel processor which consists of six processing elements (PEs). Each PE supports modeling of the corresponding string. The proposed SIMD processor can generate synthesized sounds of six strings simultaneously when a parallel synthesis algorithm receives excitation signals and parameters of each string as an input. Experimental results using a sampling rate 44.1 kHz and 16 bits quantization indicate that synthesis sounds using the proposed parallel processor were very similar to original sound. In addition, the proposed parallel processor outperforms commercial TI's TMS320C6416 in terms of execution time (8.9x better) and energy efficiency (39.8x better).

Multi-Core Processor for Real-Time Sound Synthesis of Gayageum (가야금의 실시간 음 합성을 위한 멀티코어 프로세서 구현)

  • Choi, Ji-Won;Cho, Sang-Jin;Kim, Cheol-Hong;Kim, Jong-Myon;Chong, Ui-Pil
    • The KIPS Transactions:PartA
    • /
    • v.18A no.1
    • /
    • pp.1-10
    • /
    • 2011
  • Physical modeling has been widely used for sound synthesis since it synthesizes high quality sound which is similar to real-sound for musical instruments. However, physical modeling requires a lot of parameters to synthesize a large number of sounds simultaneously for the musical instrument, preventing its real-time processing. To solve this problem, this paper proposes a single instruction, multiple data (SIMD) based multi-core processor that supports real-time processing of sound synthesis of gayageum which is a representative Korean traditional musical instrument. The proposed SIMD-base multi-core processor consists of 12 processing elements (PE) to control 12 strings of gayageum in which each PE supports modeling of the corresponding string. The proposed SIMD-based multi-core processor can generate synthesized sounds of 12 strings simultaneously after receiving excitation signals and parameters of each string as an input. Experimental results using a sampling reate 44.1 kHz and 16 bits quantization show that synthesis sound using the proposed multi-core processor was very similar to the original sound. In addition, the proposed multi-core processor outperforms commercial processors(TI's TMS320C6416, ARM926EJ-S, ARM1020E) in terms of execution time ($5.6{\sim}11.4{\times}$ better) and energy efficiency (about $553{\sim}1,424{\times}$ better).

EFFECT OF SOFT CHELATING IRRIGATION ON THE SEALING ABILITY OF GP/AH PLUS ROOT FILLINGS (Soft chelating irrigation이 GP/AH Plus로 충전된 근관의 sealing ability에 미치는 영향에 대한 평가)

  • Yu, Yi-Suk;Kim, Tae-Gun;Lee, Kwang-Won;Yu, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.6
    • /
    • pp.484-490
    • /
    • 2009
  • The purpose of this study was to evaluate the effect of soft chelating irrigant on the sealing ability of root fillings by using a glucose leakage test. A total of 45 single-rooted teeth were selected for the study. The teeth were decoronated leaving a total length of 13mm. The root canals prepared using K3 NiTi rotary instruments to an apical dimension of size 45(0.06 taper). The specimens were then randomly divided into 3 experimental groups of 13 roots each and 2 control groups of 3 roots each. Specimen in each group were prepared with different irrigation protocols : group 1, 2.5% NaOCl; group 2, 2.5% NaOCl and 17% EDTA: group 3, 2.5% NaOCl and 15% HEBP. The root canals were filled with gutta-percha and AH Plus sealer using lateral condensation. After 7 days in $37^{\circ}C$, 100% humidity, the coronal-to-apical microleakage was evaluated quantitatively using a glucose leakage model. The leaked glucose concentration was measured with spectrophotometry at 1, 4, 7, 14, 21 and 28 days. There was a tendency of increase in leakage in all experimental groups during experimental period. HEBP-treated dentin showed no significant difference with EDTA-treated dentin during experimental period. From the 21th day onward, HEBP-treated dentin showed significantly lower leakage than smear-covered dentin. HEBP-treated dentin displayed a similar sealing pattern to EDTA-treated dentin and a better sealing ability than smear-covered dentin. Consequently, a soft chelator(HEBP) could be considered as the possible alternative to EDTA.

A Material characteristics of 490MPa steel by Line Heating Method (490MPa급 강재의 선상가열에의한 재질특성)

  • Cho, Sung-Kyu;Ko, Sang-Ki;Choi, Wong-Kyu;Kim, Jung-Hak
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.58-58
    • /
    • 2009
  • 선박의 선체부분인 선수, 선미 등을 이루고 있는 곡형 외판의 제작은 강판을 원하는 형상으로 성형하기 위하여 벤딩롤러 및 유압프레스를 이용한 냉간가공과 산소-프로판가스 화염을 적용한 선상가열, 삼각가열을 이용한 열간가공으로 크게 구분할 수 있다. 선상가열을 이용한 곡면가공의 원리는 가열토치를 이용하여 강판을 가열하면 가열부는 팽창하게 되고 냉각시에는 수축하게 된다. 이 때 두께방향으로의 소성변형으로 인한 수축량의 차이로 인해 굽혀지게 된다. 최근에는 선박이 고기능 및 대형화로 인해 3차원 곡형 외판 형상이 복잡해지고, 강도를 향상시키기 위하여 합금원소(C, Nb, V, Ti)를 첨가하거나 열처리(노말라이징)를 이용한 고장력강재인 중후판의 적용이 증가하고 있다. 이러한 고강도강재를 선상가열공정으로 제작한 곡형 외판재는 가열, 냉각의 열사이클로 인해 취화되어 인성이 저하 될 수 있다. 본 연구에서는 Normalizing 열처리재인 490MPa급 강재를 이용하여, 현장에서 작업자의 미숙련으로 인해 발생 할 수 있는 최대의 가혹한 조건과 재질에 큰 영향을 미치지 않는 범위를 선정하여 선상가열시의 가열, 냉각조건에 따른 강재의 재질특성을 조사하고자 한다. 이를 위해 가열시 가열부위의 정확한 온도 측정에 역점을 두었으며, 각각 다른 선상가열 조건에 따른 시편을 제작하기 위하여 선상가열 실험장치를 제작하였다. 선상가열 실험 결과 최고가열온도 $1300^{\circ}C,\;950^{\circ}C$에서 수냉 조건인 경우 급격한 인성저하 현상이 발생하며 비록 공냉이라 하더라도 결정립 조대화로 인성 저하가 발생하였다. $800^{\circ}C$가열 후 수냉개시온도를 $700^{\circ}C$이하로 수냉한 경우에는 인성 저하 현상이 개선되고 있음을 알 수 있다.

  • PDF

The Structural and Electrical Properties of Bismuth-based Pyrochlore Thin Films for embedded Capacitor Applications

  • Ahn, Kyeong-Chan;Park, Jong-Hyun;Ahn, Jun-Ku;Yoon, Soon-Gil
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.84-88
    • /
    • 2007
  • [ $Bi_{1.5}Zn_{1.0}Nb_{1.5}O_7$ ] (BZN), $Bi_2Mg_{2/3}Nb_{4/3}O_7$ (BMN), and $Bi_2Cu_{2/3}Nb_{4/3}O_7$ (BCN) pyrochlore thin films were prepared on $Cu/Ti/SiO_2/Si$ substrates by pulsed laser deposition and the micro-structural and electrical properties were characterized for embedded capacitor applications. The BZN, BMN, and BCN films deposited at $25\;^{\circ}C$ and $150\;^{\circ}C$, respectively show smooth surface morphologies and dielectric constants of about $39\;{\sim}\;58$. The high dielectric loss of the films deposited at $150\;^{\circ}C$ compared with films deposited at $25\;^{\circ}C$ was attributed to the defects existing at interface between the films and copper electrode by an oxidation of copper bottom electrode. The leakage current densities and breakdown voltages in 200 nm thick-BMN and BZN films deposited at $150\;^{\circ}C$ are approximately $2.5\;{\times}\;10^{-8}\;A/cm^2$ at 3 V and above 10 V, respectively. Both BZN and BMN films are considered to be suitable materials for embedded capacitor applications.

Effect of Alloying Elements and Homogenization Treatment on Carbide Formation Behavior in M2 High Speed Steels (합금성분변화와 균질화처리에 따른 M2 고속도강의 탄화물 형성거동)

  • Ha, Tae Kwon;Yang, Eun Ig;Jung, Jae Young;Park, Shin Wha
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.7
    • /
    • pp.589-597
    • /
    • 2010
  • In the present study, the effect of variation in alloying elements on the carbide formation behavior during casting and homogenization treatment of M2 high speed steels was investigated. M2 high speed steels of various compositions were produced by vacuum induction melting. Contents of C, Cr, W, Mo, and V were varied from the basic composition of 0.8C, 0.3Si, 0.2Mn, 4.0Cr, 6.0W, 5.0Mo, and 2.0V in weight percent. Homogenization treatment at $1150^{\circ}C$ for 1.5 hr followed by furnace cooling was performed on the ingots. Area fraction and chemical compositions of eutectic carbide in as-cast and homogenized ingots were analyzed. Area fraction of eutectic carbide appeared to be higher in the ingots with higher contents of alloying elements the area fraction of eutectic carbide also appeared to be higher on the surface regions than in the center regions of ingots. As a result of the homogenization treatment, $M_2C$ carbide, which was the primary eutectic carbide in the as-cast ingots, decomposed into thermodynamically stable carbides, MC and $M_6C$. The latter carbide was found to be the main one after homogenization. Fine carbides uniformly distributed in the matrix was found to be MC type carbide and coarsened by homogenization.

Characterization and Conversion Electron Mössbauer Spectroscopy of HoMn1-x-FexO3 Thin Films by Pulsed Laser Deposition (PLD를 이용한 HoMn1-x-FexO3 박막 제조 및 후방 산란형 뫼스바우어 분광 연구)

  • Choi, Dong-Hyeok;Shim, In-Bo;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.1
    • /
    • pp.18-21
    • /
    • 2007
  • The hexagonal $HoMn_{1-x}-Fe_xO_3$(x=0.00, 0.05) thin films were prepared using pulsed laser deposition(PLD) method on $Pt/Ti/SiO_2/Si$ substrate. The microstructure and magnetic properties have been studied by x-ray diffraction(XRD), atomic force microscopy (AFH), scanning electron microscope(SEM:), x-ray photoelectron spectroscopy(XPS), and conversion electron $M\"{o}ssbauer$ spectroscopy(CEMS). From the analysis of the x-ray diffraction patterns, the crystal structure for all films was found to be a hexagonal($P6_3cm$), which was preferentially grown along(110) direction. The lattice constant $c_0$ of the film with x=0.05 was close to that of single crystal, whereas lattice constant $a_0$ with respect to single crystal shows a slight decrease. This difference of lattice parameters between film and single crystal was caused by the lattice mismatch between the film and $Pt/Ti/SiO_2/Si$ substrate. Conversion electron $M\"{o}ssbauer$ spectrum of $HoMn_{0.95}Fe_{0.05}O_3$ thin film shows an asymmetry doublet absorption ratio at room temperature, which is due to the oriented direction of crystallographic domains. This is corresponding with analysis of x-ray diffraction. The quadrupole splitting(${\Delta}E_Q$) at room temperature is found to be $1.62{\pm}0.01mm/s$. This large ${\Delta}E_Q$ was caused by asymmetry environment surrounding Fe ion.