DOI QR코드

DOI QR Code

Geochemical Studies on Petrogenesis of the Cretaceous Myeongseongsan Granite in the Northwestern Gyeonggi Massif

경기육괴 북서부에 분포하는 백악기 명성산 화강암의 성인에 대한 지화학적 연구

  • Yi, Eun Ji (Department of Geology, Kangwon National University) ;
  • Park, Ha Eun (Department of Geology, Kangwon National University) ;
  • Park, Young-Rok (Department of Geology, Kangwon National University)
  • Received : 2017.11.14
  • Accepted : 2017.12.09
  • Published : 2017.12.31

Abstract

The Cretaceous Myeongseongsan Granite in the northwestern Gyeonggi Massif consists of a major pale pink-colored biotite monzogranite and a minor white-colored biotite alkaligranite. Low Sr and high Ba concentrations, negative Eu-anomalies in REE plot, negative Sr anomalies in spider diagram, a negative correlation between Sr and Rb, and positive correlations between Sr and Ba and $Eu/Eu^*$ indicate that a fractional crystallization of both plagioclase and K-feldspar played a significant role during magma evolution. The Myeongseongsan Granite is plotted in I-& S-type granites on I, S, A-type granite classification scheme. While the biotite monzogranite is plotted in unfractionated I-& S-type granite, the biotite alkaligranite is plotted in fractionated I-& S-type granite, which indicates that the biotite alkaligranite is a more differentiated product. In order to elucidate the nature of the protoliths of the peraluminous Myeongseongsan magma, we plotted in $Al_2O_3/TiO_2$ vs. $CaO/Na_2O$ and Rb/Sr vs. Rb/Ba diagrams, and they suggest that the Myeongseongsan Granite was derived from clay-poor metagreywackes and meta-psammites or their igneous counterparts. Whole-rock zircon saturation temperature indicates that the Myeongseongsan magma was melted at $740-799^{\circ}C$.

경기육괴 북서부에 분포하는 백악기 명성산화강암은 암체의 대부분을 차지하는 담홍색의 흑운모 몬조 화강암과 상대적으로 소량 산출되는 백색의 흑운모 알칼리화강암으로 이루어져 있다. 낮은 Sr 함량과 높은 Ba 함량, REE 다이아그램에서 보여지는 부(-)의 Eu 이상치, 스파이더 다이아그램에서 나타나는 부(-)의 Sr 이상치, Sr과 Rb 사이에 나타나는 부의 관계, Sr과 Ba 그리고 Sr과 $Eu/Eu^*$ 사이에 나타나는 정(+)의 관계는 사장석과 K-장석의 정출이 마그마 분화과정에 있어 중요한 역할을 하였음을 지시한다. 명성산화강암은 I, S, A형 화강암을 분류하는 분류도에서 I & S 형 화강암 영역에 도시되는데, 흑운모 몬조화강암은 분화되지 않은 I & S 형 화강암 영역에, 흑운모 알칼리화강암은 분화된 I & S 형 화강암 영역에 도시됨으로 흑운모 알칼리화강암이 흑운모 몬조화강암보다 더 분화되어 생성된 화강암임을 알 수 있다. A/CNK vs A/NK 다이아그램에서 고알루미나 영역에 도시되는 명성산화강암의 근원암의 성질을 알아보기 위하여 Rb/Sr vs Rb/Ba 도와 $Al_2O_3/TiO_2$ vs $CaO/Na_2O$ 도에 도시한 결과 명성산화강암은 점토가 결핍된 근원암인 사질암과 잡사암 사이의 조성을 갖는 변성퇴적암류로부터 유래하였거나 이에 상응하는 화성암으로부터 유래하였으며, 전암 저어콘 포화 온도를 계산해 본 결과 $740-799^{\circ}C$ 온도 조건에서 용융되어 생성되었음을 알 수 있다.

Keywords

References

  1. Bachmann, O., and Bergantz, G.W., 2006, Gas percolation in upper-crustal silicic crystal mushes as a mechanism for upward heat advection and rejuvenation of near-solidus magma bodies. Journal of Volcanology and Geothermal Research, 149, 85-102. https://doi.org/10.1016/j.jvolgeores.2005.06.002
  2. Bonin, B., 2007, A-type granites and related rocks:evolution of a concept, problems and prospects. Lithos, 97, 1-20. https://doi.org/10.1016/j.lithos.2006.12.007
  3. Boynton, W.V., 1984, Geochemistry of the rare earth elements: meteorite studies. In: Henderson P. (ed), Rare earth element geochemistry. Elsevier, 63-114.
  4. De la Roche H., Leterrier J., Grade Claude P. and Marchal M., 1980, A classification of volcanic and plutonic rocks using R1-R2 diagrams and major element analyses-its relationships and current nomenclature. Chem Geol., 29, 183-210 p. occurrences. Journal of Petrology 29, 765-803p.
  5. Eby, G.N., 1992, Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 20, 641-644. https://doi.org/10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
  6. Hanchar, J.M., and Watson, E.B., 2003, Zircon saturation thermometry. Reviews of Mineralogy and Geochemistry, 53, 89-112. https://doi.org/10.2113/0530089
  7. Hwang, J.H., and Kihm, Y.H., 2007, Geological Report of the Jipori Sheet (1:50,000). Daejeon, Korea Institute of Geoscience and Mineral Resources, 54 p. (in Korean with English abstract).
  8. Hwang, S.K., An, Y.M., and Yi, K., 2011, SHRIMP age dating and volcanism times of the igneous rocks in the Cheolwon Basin, Korea. Journal of the Petrological Society of Korea, 20, 231-241 (in Korean with English abstract). https://doi.org/10.7854/JPSK.2011.20.4.231
  9. Hwang, S.K. and Ahn, U.S., 2017, Geochemistry and Tectonic Implications of Triassic Bojangsan Trachyte in the Southern Margin of the Imjingang Belt, Korea. Journal of the Petrological Society of Korea, 26, 113-125 (in Korean with English abstract).
  10. Hwang, S.K., Kee, W.-S., and Yi, K., 2017, SHRIMP zircon dating and stratigraphic implications of the Bojangsan Trachyte in the Imjingang Belt, Korea. Journal of the Petrological Society of Korea, 53, 423-432 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2017.53.3.423
  11. Irvin T.N. and Baragar W.R.A., 1971, A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8, 523-548. https://doi.org/10.1139/e71-055
  12. Jung, S., and Pfander, J.A., 2007, Source composition and melting temperatures of orogenic granitoids: constraints from $CaO/Na_2O,\;Al_2O_3/TiO_2$ and accessory mineral saturation thermometry. European Journal of Mineralogy, 19, 859-870. https://doi.org/10.1127/0935-1221/2007/0019-1774
  13. Kim, S.W., Kwon, S., Ryu, I.-C., Jeong, Y.-J., Choi, S.J., Kee, W.-S., Yi, K., Lee, Y.S., Kim, B.C., Park, D.W., 2012, Characteristics of the Early Cretaceous igneous activity in the Korean Peninsula and tectonic implications. Journal of Geology, 120, 625-646. https://doi.org/10.1086/667811
  14. Kim, S.W., Kwon, S., Park, S.I., Lee, C., Cho, D.-L., Lee, H.-J., Ko, K., and Kim, S.J., 2016, SHRIMP U-Pb dating and geochemistry of the Cretaceous plutonic rocks in the Korean Peninsula: A new tectonic model of the Cretaceous Korean Peninsula. Lithos, 262, 88-106. https://doi.org/10.1016/j.lithos.2016.06.027
  15. Lee, S.G., Kim, T.-K., Lee, J.-S., Song, Y.-H., 2006, Rb-Sr geochemistry in Seokmodo granitoids and hot spring, Ganghwa: an application of Sr isotope for clarifying the source of hot spring. Journal of the Petrological Society of Korea, 15, 60-71 (in Korean with English Abstract).
  16. Maniar, P.D. and Piccoli, P.M., 1989, Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101, 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
  17. McDonough, W.F., Sun, S., Ringwood, A.E., Jagoutz, E. and Hofmann, A.W., 1991, K, Rb, and Cs in the earth and moon and the evolution of the earth's mantle. Geochim. Cosmochim. Acta, Ross Taylor Symposium volume.
  18. Miller, C.F., McDowell, S.M., and Mapes, R.W., 2003, Hot and cold granites? Implications of zircon saturation temperaturea and preservation of inheritance. Geology, 31, 529-532. https://doi.org/10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2
  19. Nakamura N., 1974, Determinaion of REE, Ba, Fe, Mg, Na, and K in carbonaceous and ordinary chondrites. Geochimica Cosmochimica Acta, 38, 757-775. https://doi.org/10.1016/0016-7037(74)90149-5
  20. Sylvester, P.J., 1988, Post-collisional strongly peraluminous granites. Lithos, 45, 29-44.
  21. Tarney, J. and Jones, C.E., 1994, Trace element geochemistry of orogenic igneous rocks and crustal growth models. Jour. Geol. Soc. London, 151, 855-868. https://doi.org/10.1144/gsjgs.151.5.0855
  22. Watson, E.B., and Harrison, T.M., 1983, Zircon saturation revisited: temperature and composition effects in a variery of crustal magma types. Earth Planetary Science Letters, 64, 295-304. https://doi.org/10.1016/0012-821X(83)90211-X
  23. Whalen J.B., Currie, K.L., and Chappell, B.W., 1987, Atype graniites: geochemical characteristics, discrimination and petrogenesis, Contribution to Mineralogy and Petrology 95, 407-419. https://doi.org/10.1007/BF00402202
  24. Wood, D.A., Joron, J.L., Treuil, M., Norry, M. and Tarney, J., 1979, Elemental and Sr isotopie variations in basic lavas from Iceland and the surrounding ocean floor. Contribibution to Mineralogy and Petrology, 70, 319-339. https://doi.org/10.1007/BF00375360
  25. Wood, D.A., Tarney, J. and Weaver, B.L., 1981, Trace element variations in Atlantic ocean basalts and Proterozoic dykes from Northwest Scotland: their bearing upon the nature and geochemical evolution of the upper mantle. Tectonophysics, 75, 91-112. https://doi.org/10.1016/0040-1951(81)90211-0
  26. Yun, H.S., Hong, S.S., and Kim, J., 2006, Petrochemistry of the Pink Hornblende Biotite Granite in the Galmal-Yeongbug area of the North Gyeonggi. Journal of the Petrological Society of Korea, 15, 167-179. (in Korean with English Abstract).
  27. Zhao, L., Guo, F., Fan, W., Zhang, Q., Wu, Y., Li, J., and Yan, W., 2016, Early Cretaceous potassic volcanic rocks in the Jiangnan Orogenic Bely, East Chian: Crustal melting in response to subduction of the Pacific-Izanagi ridge?. Chemical Geology, 437, 30-43. https://doi.org/10.1016/j.chemgeo.2016.05.011