• Title/Summary/Keyword: a virtual plant

Search Result 171, Processing Time 0.025 seconds

A Study on the Safety Training System based on Virtual Reality in Large Scale Plant (대규모 플랜트에서의 가상현실 기반 플랜트 안전훈련 시스템에 관한 연구)

  • Lee, Jae Yong;Kim, Hyoung-Jin;Lee, Chunsik;Park, Chan Cook
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.2
    • /
    • pp.55-60
    • /
    • 2019
  • To develop a plant safety training system using virtual reality technology, we constructed a training system for a large scale plant. Compared with safety training for small plants or unit equipment, many system configurations such as virtual plant model, in-process data processing, work instruction, etc. are required and integrated system works have been carried out. The target plant, RDS process, is a high-risk process(high-temperature, high-pressure) that takes into account the training scenarios that can be taken in the event of a leaking fire in the range and refer to the actual shutdown procedure. The proposed safety training integration system can be used in similar situations that can occur in the RDS process and can be a platform for safety training using virtual reality in a large plant.

Analysis of the Virtual Power Plant Model Based on the Use of Emergency Generators in South Korea

  • Chung, Beom Jin;Kim, Chang Seob;Son, Sung-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.38-46
    • /
    • 2016
  • This study analyzes the economic efficiency of the virtual power plant (VPP) model that aims to integrate a number of emergency generators installed at the consumer end and operate them as a single power plant. Several factors such as the demand response benefits from VPP operation and costs incurred for converting emergency generators into VPP are considered to assess the economic efficiency of the proposed VPP model. Scenarios for yearly VPP conversion are prepared based on the installed capacities of the emergency generators distributed in South Korea, while the costs and benefits are calculated from the viewpoints of participants and power companies in accordance with California Test Methods. Furthermore, a sensitivity analysis is conducted on the cost factors among those affecting the economic efficiency of VPP business because these two factors have a great impact on benefits.

Analysis on Virtual reality-based information requirements for Nuclear power plant operation and maintenance (원전 가상현실기반 운영/정비를 위한 정보요건 분석)

  • Lee, Won-Hyung;Kim, Woo Jung;Byon, Sujin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.276-277
    • /
    • 2013
  • Complex facilities and major equipment in nuclear power plants check to use analog measuring device. Operating and maintenance using 3D data for geometric information management method, which is a virtual reality technology development is urgently needed. Therefore, this paper defines the information requirements for the implementation of a virtual reality-based technology in nuclear power plant. Furthermore developing owner requirements for applying the virtual reality-based technology is purpose.

  • PDF

Large-scale Virtual Power Plant Management Method Considering Variable and Sensitive Loads (가변 및 민감성 부하를 고려한 대단위 가상 발전소 운영 방법)

  • Park, Yong Kuk;Lee, Min Goo;Jung, Kyung Kwon;Lee, Yong-Gu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.225-234
    • /
    • 2015
  • Nowadays a Virtual Power Plant (VPP) represents an aggregation of distributed energy resource such as Distributed Generation (DG), Combined Heat and Power generation (CHP), Energy Storage Systems (ESS) and load in order to operate as a single power plant by using Information and Communication Technologies, ICT. The VPP has been developed and verified based on a single virtual plant platform which is connected with a number of various distributed energy resources. As the VPP's distributed energy resources increase, so does the number of data from distributed energy. Moreover, it is obviously inefficient in the aspects of technique and cost that a virtual plant platform operates in a centralized manner over widespread region. In this paper the concept of the large-scale VPP which can reduce a error probability of system's load and increase the robustness of data exchange among distributed energy resources will be proposed. In addition, it can directly control and supervise energy resource by making small size's virtual platform which can make a optimal resource scheduling to consider of variable and sensitive load in the large-scale VPP. It makes certain the result is verified by simulation.

Virtual Manufacturing for an Automotive Company(VII) : Construction and Application of a Virtual Press Shop (자동차 가상생산 기술 적용(VII) : 프레스 디지털 가상공장의 구축과 활용)

  • Kuk, Seung-Ho;Lee, Sang-Seok;So, Soon-Il;Noh, Sang-Do;Kim, H.S.;Shim, K.B.;Kim, J.Y.
    • IE interfaces
    • /
    • v.21 no.3
    • /
    • pp.322-332
    • /
    • 2008
  • Digital Virtual Manufacturing is a technology to facilitate effective product developments and agile productions by digital model representing the physical and logical schema and the behavior of real manufacturing system, and it includes product, resources, processes and plant. For successful applications of this technology, a digital virtual factory as a well-designed and integrated environment is essential. In this research, we constructed a sophisticated digital virtual factory of a Korean automotive company's press shop. For efficient constructions of a digital virtual factory useful to kinematic simulations and visualizations, we analyzed entire business process and detailed activities of press engineering. Also, we evaluated geometries, structures, characteristics and motions of a plant and machines in press shop. The geometric model and related data of a virtual press shop are built and managed by a modeling standard defined in this paper. The virtual manufacturing simulation of press machines is conducted to evaluate kinematic motions, cycle time and locations of components using geometric models and related data. It's for interference checks and productivity improvements. We expect that this virtual press shop helps us to achieve great savings in time and cost in many manufacturing preparation activities in the new car development process of automotive companies.

Force Synchronizing Control for AC Servomotor-Ball Screw Driven Injection Unit (AC서보모터-볼스크루 구동 사출장치의 힘 동기제어)

  • Cho, S.H.
    • Journal of Drive and Control
    • /
    • v.12 no.2
    • /
    • pp.14-20
    • /
    • 2015
  • This paper focuses on the issue of force synchronizing control for the injection servomechanism of injection molding machines. Prior to the controller design, a virtual design model was developed for the injection mechanism with an AC servomotor-ball screw. A synchronizing controller is designed and combined with the PID control to accommodate the mismatches between the real plant and the linear model plant used. Due to the plant uncertainty, the stiffness and the damping of the mechanism were considered. From the tracking control simulations based on the virtual design model, it is shown that a significant reduction in force synchronizing error is achieved through the use of a proposed control scheme.

Study on the development of ISI DB management system for virtual nuclear power plant (가상원전 ISI DB 운영시스템 개발에 관한 연구)

  • Shin, Jin-Ho;Song, Jae-Ju;Suh, Myung-Won;Park, Dae-Yu;Cho, Ki-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.227-229
    • /
    • 2001
  • In recent years, studies on virtual reality and web 3D have been progressed and got a eye-opening progress in the field. In this paper, to improve a process of In-Service Inspection work for a nuclear power plant, we developed a virtual ISI DB management system by using virtual reality technology. This management system provides a high degree of efficiency for In-Service Inspection process and makes inspectors comfortable in web environment. This paper will be hope to activate a introduction of VR technology to the domestic industry.

  • PDF

Time-Series Estimation based AI Algorithm for Energy Management in a Virtual Power Plant System

  • Yeonwoo LEE
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.1
    • /
    • pp.17-24
    • /
    • 2024
  • This paper introduces a novel approach to time-series estimation for energy load forecasting within Virtual Power Plant (VPP) systems, leveraging advanced artificial intelligence (AI) algorithms, namely Long Short-Term Memory (LSTM) and Seasonal Autoregressive Integrated Moving Average (SARIMA). Virtual power plants, which integrate diverse microgrids managed by Energy Management Systems (EMS), require precise forecasting techniques to balance energy supply and demand efficiently. The paper introduces a hybrid-method forecasting model combining a parametric-based statistical technique and an AI algorithm. The LSTM algorithm is particularly employed to discern pattern correlations over fixed intervals, crucial for predicting accurate future energy loads. SARIMA is applied to generate time-series forecasts, accounting for non-stationary and seasonal variations. The forecasting model incorporates a broad spectrum of distributed energy resources, including renewable energy sources and conventional power plants. Data spanning a decade, sourced from the Korea Power Exchange (KPX) Electrical Power Statistical Information System (EPSIS), were utilized to validate the model. The proposed hybrid LSTM-SARIMA model with parameter sets (1, 1, 1, 12) and (2, 1, 1, 12) demonstrated a high fidelity to the actual observed data. Thus, it is concluded that the optimized system notably surpasses traditional forecasting methods, indicating that this model offers a viable solution for EMS to enhance short-term load forecasting.

The User Experience Design of Virtual and Augmented Reality for Environmental and Ecological Information - Focusing on the Conservatory of Seoul Botanic Park - (환경생태정보 전달을 위한 가상·증강현실 사용자 경험디자인 연구 - 서울식물원 온실을 중심으로 -)

  • Zoh, Kyung Jin;Lee, Yumi;Song, Youngkeun;Jeong, Wookju
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.2
    • /
    • pp.69-84
    • /
    • 2022
  • The purpose of this research is to examine the user experience design that effectively exhibits botanical information through a virtual habitat built with 3D modeling and scanning data for the conservatory at Seoul Botanic Park. Seoul Botanic Park's conservatory contains environmental and ecological information on the wide spectrum of diverse plants under twelve cities all over the world. However, the exhibition method, which focuses on maps and information boards, has limitations in delivering diverse plant and habitat information to visitors. Virtual and augmented reality can be used as an effective tool for educating and experiencing the contents of various plant species as it can convey the ecological and environmental conditions of the habitat and local culture at diverse levels. This study experimented with constructing virtual habitats using the Unreal Engine and effectively communicating various botanical information through the interaction. With the introduction of a virtual habitat, we intend to enhance the user experience of park visitors and ultimately explore the possibility of using virtual and augmented reality to convey multi-layered environmental and ecological information of landscape.

Development of a Knowledge-Based Information Management System for Plant Maintenance (설비 관리를 위한 지식기반 정보관리 시스템의 개발)

  • Park, Young-Jae;Lee, Sang-Min;Yim, Hyung-Sang;Choi, Jae-Boong;Kim, Young-Jin;Roh, Eun-Chul;Lee, Byung-Ine
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1933-1940
    • /
    • 2003
  • Recently, the importance of plant maintenance(PM) was highly raised to provide efficient plant operation which highly affects the productivity. For this reason, a number of engineering methodologies, such as risk-based inspection(RBI), fitness for service guidelines(FFS), plant lifecycle management(PLM), have been applied to improve the plant operation efficiency. Also, a network-based business operation system, which is called ERP(Enterprise Resource Planning), has been introduced in the field of plant maintenance. However, there was no attempt to connect engineering methodologies to the ERP PM system. In this paper, a knowledge-based information system for the plant operation of steel making company has been proposed. This system which is named as K-VRS(Knowledge-based Virtual Reality System), provides a connection between ERP plant maintenance module and knowledge-based engineering methodologies, and thus, enables network-based highly effective plant maintenance process. The developed system is expected to play a great role for more efficient and safer plant maintenance.