• Title/Summary/Keyword: a variable reference model

Search Result 159, Processing Time 0.029 seconds

Adaptive Control of A One-Link Flexible Robot Manipulator (유연한 로보트 매니퓰레이터의 적응제어)

  • 박정일;박종국
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.5
    • /
    • pp.52-61
    • /
    • 1993
  • This paper deals with adaptive control method of a robot manipulator with one-flexible link. ARMA model is used as a prediction and estimation model, and adaptive control scheme consists of parameter estimation part and adaptive controller. Parameter estimation part estimates ARMA model's coefficients by using recursive least-squares(RLS) algorithm and generates the predicted output. Variable forgetting factor (VFF) is introduced to achieve an efficient estimation, and adaptive controller consists of reference model, error dynamics model and minimum prediction error controller. An optimal input is obtained by minimizing input torque, it's successive input change and the error between the predicted output and the reference output.

  • PDF

Adaptive Feed-forward Control with Reference Model for Position Controller (기준모델과 피드포워드 적응제어를 사용한 위치제어기)

  • 윤명하;최남열;이치환
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.5
    • /
    • pp.413-418
    • /
    • 2002
  • This paper proposed a feed-forward adaptive position controller that is robust for variable Inertia. The control system consists of PI Position controller, feed-forward and model reference adaptive control. A parameter g(t) of the feed-forward adaptive position controller is adapted by using both the reference model speed and position error. So it improves the transient response and reduces the settling time. And normalization function Is used to make linear adaptation time. The validity of the feed-forward adaptive controller is confirmed by simulation results.

Design of Adaptive Observer Applied to M.R.A.C. by Selection of State Variable Filter (상태변수 필터 선정에 의한 적응 관측기의 설계 및 기준모델 적응제어)

  • 홍연찬;김종환;최계근
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.4
    • /
    • pp.597-602
    • /
    • 1987
  • In this paper, an adaptive observe based upon the exponentially weighted least-squares method is implemented in the design of a model reference adaptive controller for an unknown time-invariant discrete single-input single-output linear plant. A method of selecting the state variable filter is proposed. In this scheme, all the past data are weithted exponentially with the weighting coefficient.

  • PDF

Towards the Reconstruction of Time-dependent Vibronic States from Nonlinear Wavepacket Interferometry Signals

  • Humble, Travis S.;Cina, Jeffrey A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.8
    • /
    • pp.1111-1118
    • /
    • 2003
  • We present one-color nonlinear wavepacket interferometry (WPI) signal calculations for a system of two electronic levels and one vibrational degree of freedom. We consider two cases, a displaced harmonic oscillator system, which can be treated analytically, and a model photodissociative system, whose WPI signal must be calculated by numerical wavepacket propagation. We show how signals obtained with different combinations of intrapulse-pair phase shifts can be combined to isolate the complex-valued overlap between a given onepulse target wavepacket and a variable three-pulse reference wavepacket. We demonstrate that with a range of inter- and intrapulse-pair delays the complex overlaps and variable reference states can be used to reconstruct the target wavepacket. We compare our results with previous methods for vibronic state reconstruction based on linear WPI and discuss further generalizations of our method.

New Instantaneous Torque Estimation and Control for PM Synchronous Motor (영구자석 동기전동기의 새로운 순시토오크 추정 및 제어)

  • 정세교;김현수;윤명중
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.1
    • /
    • pp.23-35
    • /
    • 1998
  • A new instantaneous torque control is presented for a high performance control of a permanent magnet(PM) synchronous motor. In order to deal with the torque pulsating problem of a PM synchronous motor in a low speed region, new torque estimation and cotrol techniques are proposed. The linkage flux of a PM synchronous motor is estimated using a model reference adaptive system technique and the torque is instantaneously controlled by the proposed torque controller combining an integral variable structure control with a space vector PWM. The proposed control provides the advantage of reducing the torque pulsation caused by the non-sinusoidal flux distribution. This control strategy is applied to the high torque PM synchronous motor drive system for direct drive applications and implemented by using a software of the DSP TMS320C30. The simulations and experiments are carried out for this system and the results well demonstrate the effectiveness of proposed control.

The development of On-line Model for the Prediction of Effective Strain Distribution by Non-dimensionalization on FEM Basis (유한요소법 기반의 무차원화를 이용한 판 유효 변형률 분포 예측 온라인 모델 개발)

  • Kim S. H.;Lee J. H.;Hwang S. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.359-367
    • /
    • 2004
  • In this research on-line model for the prediction of the effective strain distribution in strip on finishing mill process is presented. To describe the effective strain distribution in strip, three guide points and a distribution fitting variable are used. On-line models to get these points and fitting variable non-dimensionalization method and least square method were used with FEM simulation results. The model is developed using strip only FEM simulation as reference sets and compared with roll coupled FEM simulation results as perturbed sets. The on-line model to describe effective strain distribution shows good agreement with coupled FEM analysis results.

  • PDF

Speed Control of Induction Motor Using Flux Compensation In Model Reference Adaptive System (FMRAS에 보상기를 이용한 유도전동기 속도제어)

  • Seo Young-Soo;Lee Chun-Sang
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.200-204
    • /
    • 2002
  • When the vector control, which does not need a speed? signal from a mechanical speed sensor, it is possible to reduce the cost of the control equipment and to improve the control performance in many industrial application. This paper describes a rotor speed identification method of induction motor based on the theory of flux model reference adaptive system. The estimator execute the rotor speed identification so that the vector control of the induction motor may be achieved. The improved auxiliary variable of the two model are introduced to perform accurate rotor speed estimation. Simulation result show the validity of the proposed control method.

  • PDF

Induction Motor Speed Controlf MRAS-Based Load-Torque Observer (모델 기준 적응 시스템(MRAS) 부하 토크 관측기를 이용한 유도 전동기의 속도 제어)

  • Cho, Moon-Taek;Lee, Chung-Sik;Lee, Se-Hun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.2
    • /
    • pp.119-123
    • /
    • 2007
  • This paper investigates a speed sensorless control of induction motor. The control strategy is based on MRAS(Model Reference Adaptive System) using load-torque observer as a reference model for flux estimation. The speed response of conventional MRAS controller characteristics is affected by variations of load torque disturbance. In the proposed system, the speed control characteristics using a load-torque observer control isn't affected by a load torque disturbance. Control algorithm that propose whole system through MATLAB SIMULINK because do modelling simulation result are presented to prove the effectiveness of the adaptive sliding mode controller for the drive variable load of induction motor. Therefore we hope to be extended in industrial application.

  • PDF

Modelling the reinforced concrete beams strengthened with GFRP against shear crack

  • Kaya, Mustafa;Yaman, Canberk
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.127-137
    • /
    • 2018
  • In this study, the behavior of the number of anchorage bolts on the glass-fiber reinforced polymer (GFRP) plates adhered to the surfaces of reinforcing concrete (RC) T-beams was investigated analytically. The analytical results were compared to the test results in term of shear strength, and midpoint displacement of the beam. The modelling of the beams was conducted in ABAQUS/CAE finite element software. The Concrete Damaged Plasticity (CDP) model was used for concrete material modeling, and Classical Metal Plasticity (CMP) model was used for reinforcement material modelling. Model-1 was the reference specimen with enough sufficient shear reinforcement, and Model-2 was the reference specimen having low shear reinforcement. Model-3, Model-4 and Model-5 were the specimens with lower shear reinforcement. These models consist of a single variable which was the number of anchorage bolts implemented to the GFRP plates. The anchorage bolts of 2, 3, and 4 were mutually mounted on each GFRP plates through the beam surfaces for Model-3, Model-4, and Model-5, respectively. It was found that Model-1, Model-3, Model-4 and Model-5 provided results approximately equal to the test results. The results show that the shear strength of the beams increased with increasing of anchorage numbers. While close results were obtained for Model-1, Model-3, Model-4 and Model-5, in Model-2, the rate of increase of displacement was higher than the increase of load rate. It was seen, finite element based ABAQUS program is inadequate in the modeling of the reinforced concrete specimens under shear force.

Position error compensation of the multi-purpose overload robot in nuclear power plants

  • Qin, Guodong;Ji, Aihong;Cheng, Yong;Zhao, Wenlong;Pan, Hongtao;Shi, Shanshuang;Song, Yuntao
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2708-2715
    • /
    • 2021
  • The Multi-Purpose Overload Robot (CMOR) is a key subsystem of China Fusion Engineering Test Reactor (CFETR) remote handling system. Due to the long cantilever and large loads of the CMOR, it has a large rigid-flexible coupling deformation that results in a poor position accuracy of the end-effector. In this study, based on the Levenberg-Marquardt algorithm, the spatial grid, and the linearized variable load principle, a variable parameter compensation model was designed to identify the parameters of the CMOR's kinematics models under different loads and at different poses so as to improve the trajectory tracking accuracy. Finally, through Adams-MATLAB/Simulink, the trajectory tracking accuracy of the CMOR's rigid-flexible coupling model was analyzed, and the end position error exceeded 0.1 m. After the variable parameter compensation model, the average position error of the end-effector became less than 0.02 m, which provides a reference for CMOR error compensation.