Browse > Article
http://dx.doi.org/10.1016/j.net.2021.02.005

Position error compensation of the multi-purpose overload robot in nuclear power plants  

Qin, Guodong (College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics & Astronautics)
Ji, Aihong (College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics & Astronautics)
Cheng, Yong (Institute of Plasma Physics, Chinese Academy of Science)
Zhao, Wenlong (Institute of Plasma Physics, Chinese Academy of Science)
Pan, Hongtao (Institute of Plasma Physics, Chinese Academy of Science)
Shi, Shanshuang (Institute of Plasma Physics, Chinese Academy of Science)
Song, Yuntao (Institute of Plasma Physics, Chinese Academy of Science)
Publication Information
Nuclear Engineering and Technology / v.53, no.8, 2021 , pp. 2708-2715 More about this Journal
Abstract
The Multi-Purpose Overload Robot (CMOR) is a key subsystem of China Fusion Engineering Test Reactor (CFETR) remote handling system. Due to the long cantilever and large loads of the CMOR, it has a large rigid-flexible coupling deformation that results in a poor position accuracy of the end-effector. In this study, based on the Levenberg-Marquardt algorithm, the spatial grid, and the linearized variable load principle, a variable parameter compensation model was designed to identify the parameters of the CMOR's kinematics models under different loads and at different poses so as to improve the trajectory tracking accuracy. Finally, through Adams-MATLAB/Simulink, the trajectory tracking accuracy of the CMOR's rigid-flexible coupling model was analyzed, and the end position error exceeded 0.1 m. After the variable parameter compensation model, the average position error of the end-effector became less than 0.02 m, which provides a reference for CMOR error compensation.
Keywords
Multi-purpose overload robot; Remote handling system; Levenberg-marquardt; Parameter identification;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Haist, S. Mills, A. Loving, Remote handling preparations for JET EP2 shutdown, Fusion Eng. Des. 84 (2-6) (2009) 875-879.   DOI
2 X. Shan, G. Cheng, Structural error and friction compensation control of a 2(3PUS+S) parallel manipulator, Mech. Mach. Theor. 124 (2018) 92-103.   DOI
3 C. Zhang, Dynamic modeling of robot arm with joint and link flexibility manipulating a constrained object, Chin. J. Mech. Eng-En. 39 (6) (2013) 9-12.   DOI
4 S. Hayati, M. Mirmirani, Improving the absolute positioning accuracy of robot manipulators, J. Rob. Syst. 2 (4) (1985) 397-413.   DOI
5 A. Cibicik, E. Pedersen, O. Egeland, Dynamics of luffing motion of a flexible knuckle boom crane actuated by hydraulic cylinders, Mech. Mach. Theor. 43 (2020) 1-18.   DOI
6 H. Luo, Y. Liu, Z. Chen, et al., Co-simulation control of robot arm dynamics in ADAMS and MATLAB, Res. J. Appl. Sci. Eng. Technol. 6 (20) (2013) 3778-3783.   DOI
7 L. Huang, Y. Hironao, N. Tao, et al., A mastereslave control method with gravity compensation for a hydraulic teleoperation construction robot, Adv. Mech. Eng. 9 (2017) 1-11.
8 P. Hong, W. Tian, D. Mei, et al., Robotic variable parameter accuracy compensation using space grid, Robot 37 (3) (2015) 327-335.
9 M. Lei, Y. Song, S. Liu, et al., Conceptual design of the HCCB blanket system integration for CFETR, Int. J. Energy Res. 43 (2019) 3306-3312.   DOI
10 C. Choi, A. Tesini, R. Subramanian, et al., Multi-purpose deployer for ITER invessel maintenance, Fusion Eng. Des. 98-99 (2015) 1448-1452.   DOI
11 N. Liu, X. Zhang, L. Zhang, et al., Study on the rigid-flexible coupling dynamics of welding robot, Wireless Pers. Commun. 102 (2018) 1-12.   DOI
12 G.G. Sen, S. Mukhopadhyay, M. Chris H, et al., Master slave control of a teleoperated anthropomorphic robotic arm with gripping force sensing, IEEE. T. Instrum. Meas. 55 (2006) 2136-2145.   DOI
13 G. Liu, X. Wu, Y. Chen, et al., Analysis of influences of end position mass and joint rotary inertia on motion stability of a flexible manipulator arm, China Mech. Eng. 25 (4) (2014) 480-485.   DOI
14 M.S. Manuelraj, P. Dutta, K.K. Gotewal, et al., Structural analysis of ITER multipurpose deployer, Fusion Eng. Des. 109 (2016) 1296-1301.   DOI
15 Y. Zhang, C. Liu, P. Liu, Industrial robot kinematics parameter identification, Adv. Mater. 889 (2014) 1136-1143.
16 G. Qin, A. Ji, W. Wang, et al., Analyzing trajectory tracking accuracy of a flexible multi-purpose deployer, Fusion Eng. Des. 151 (2020) 1-10.
17 L. Yan, W. Xu, Z. Hu, et al., Virtual-base modeling and coordinated control of a dual-arm space robot for target capturing and manipulation, Multibody Syst. Dyn. 45 (2018) 431-455.   DOI
18 H. Tian, D. Zhao, F. Yin, et al., Kinematic calibration of a 6-DOF hybrid robot by considering multicollinearity in the identification Jacobian, Mech. Mach. Theor. 131 (2019) 371-384.   DOI