• Title/Summary/Keyword: a tuning

Search Result 2,791, Processing Time 0.03 seconds

A Speed Control of Stepping Motor Using a Self-Tuning Regulator

  • Kim, Young-Tae;Kim, Sei-Yoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.11
    • /
    • pp.69-75
    • /
    • 2009
  • In this paper, a self-tuning regulator for a speed control of a permanent magnet type stepping motor is proposed. The self-tuning theory provides a nonlinear modeling of a stepping motor drive system and can provide the controller with information regarding the reference variation and parameter variation of the stepping motor through the on-line estimation. The proposed self-tuning regulator organize the positive feedback loop and IP(Integral-Proportional) type. Therefore, the proposed self-tuning regulator has a robust control capabilities during dynamic operation. The availability of the proposed controller is verified through experimental results.

Self -Tuning Scheme for Parameters of PID Controllers by Fuzzy Inference (퍼지추론에 의한 PID제어기의 파라미터 Tuning의 구성)

  • 이요섭;홍순일
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.4
    • /
    • pp.52-57
    • /
    • 2003
  • A PID parameter tuning method was presented by the fuzzy singleton inference, based on step response-shaping of plant and experience knowledge of expert. The parameter-tuning has tow levels. The higher level determines modified coefficients for the controller based on operator's tuning know-how for characteristics of plant which can not be modeled. The lower level determines specified coefficients based on characteristics of response by Ziegler-Nickel's bounded sensitivity method. The last level parameters tuning of a PID controller is adjusted which the modified and specified coefficients makes adjustment rule, and is adjusted the proper value to each parameters by fuzzy singleton inference. Moreover, proposed the tuning method can reflex exporter knowledge and operator's tuning know-how and fuzzy singleton inference is rapidly operated.

  • PDF

A 2.4GHz Back-gate Tuned VCO with Digital/Analog Tuning Inputs (디지털/아날로그 입력을 통한 백게이트 튜닝 2.4 GHz VCO 설계)

  • Oh, Beom-Seok;Lee, Dae-Hee;Jung, Wung
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.234-238
    • /
    • 2003
  • In this work, we have designed a fully integrated 2.4GHz LC-tuned voltage-controlled oscillator (VCO) with multiple tuning inputs for a $0.25-{\mu}m$ standard CMOS Process. The design of voltage-controlled oscillator is based on an LC-resonator with a spiral inductor of octagonal type and pMOS-varactors. Only two metal layer have been used in the designed inductor. The frequency tuning is achieved by using parallel pMOS transistors as varactors and back-gate tuned pMOS transistors in an active region. Coarse tuning is achieved by using 3-bit pMOS-varactors and fine tuning is performed by using back-gate tuned pMOS transistors in the active region. When 3-bit digital and analog inputs are applied to the designed circuits, voltage-controlled oscillator shows the tuning feature of frequency range between 2.3 GHz and 2.64 GHz. At the power supply voltage of 2.5 V, phase noise is -128dBc/Hz at 3MHz offset from the carrier, Total power dissipation is 7.5 mW.

  • PDF

MEMS TUNING ELEMENTS FOR MICRO/MILLIMETER-WAVE POWER AMPLIFIERS (마이크로/밀리미터파 대역에서 전력증폭기의 효율향상을 위한 MEMS 튜닝회로)

  • Kim, Jae-Heung
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.118-121
    • /
    • 2003
  • A new approach, using MEMS, for improving the performance of high efficiency amplifiers is proposed in this paper. The MEMS tuning element is described as a variable-length shorted CPW stub. Class-E amplifiers can be optimally tuned by these MEMS tuning elements because their operation varies with the impedance of the output tuning circuit. A MEMS tuning element was simulated using full-wave EM simulators to obtain its S-parameters. A Class-E amplifier with the MEMS was designed at 8GHz. The non-linear operation of this amplifier was simulated to explore the effect of the MEMS tuning. Comparing the initially designed amplifier without MEMS, the Power Added Efficiency (PAE) of the amplifier with MEMS is improved from 46.3% to 66.9%. For the amplifier with MEMS, the nonlinear simulation results are PAE = 66.90%, $\eta$(drain efficiency) = 75.89%, and $P_{out}$ = 23.37 dBm at 8 GHz. In this paper, the concept of the MEMS tuning element is successfully applied to the Class E amplifier designed with transmission lines.

  • PDF

A Design for a Modified Circular Slot Antenna with a Fork-like Tuning Stub for UWB Operations

  • Yoon, Joong-Han
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.2
    • /
    • pp.65-70
    • /
    • 2016
  • This paper proposes and experimentally tests a modified circular slot antenna fed by a fork-like tuning stub for ultra-wideband (UWB) operation. The proposed antenna consists of a modified circular slot model and fork-like tuning stub. The proposed antenna is printed on a 34.0 mm × 30.0 mm FR4 substrate with thickness of 1.0 mm and relative permittivity of 4.4. The effect of various parameters of the circular slot and fork-like tuning stub is investigated for UWB operation. The modified circular slot and fork-like tuning stub are fabricated on the substrate to achieve wideband operation and good impedance matching. Experimental results demonstrated that the measured return loss exhibits an acceptable agreement with the simulated return loss and satisfies the -10 dB impedance bandwidth requirement while simultaneously covering the UWB bands. In addition, the proposed antenna shows good radiation characteristics and gains in the UWB bands.

$H_{\infty}$ Self-Tuning Control of a Flexible Link Robot with Unknown Payload (미지 부하 질량을 갖는 유연 링크 로봇의 $H_{\infty}$ 자기 동조 제어)

  • Han, Ki-Bong;Lee, Shi-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.2
    • /
    • pp.160-168
    • /
    • 1997
  • A $H_{\infty}$self-tuning control scheme for the tip position of a flexible link robot handling unknown loads is presented here. The scheme essentially comprises a recursive least-squares identification algorithm and $H_{\infty}$self-tunning controller. The $H_{\infty}$control low is designed to be robust to uncertain parameters and the self-tunning action provides adaption to unknown parameters. Through numerical study, the performance comparison of the $H_{\infty}$self-tuning controller with a constant gain $H_{\infty}$controller as well as a LQG self-tuning controller clearly shows its superior ability in handling load changes in quiescent states.nt states.

  • PDF

A 1 GHz Tuning range VCO with a Sigma-Delta Modulator for UWB Frequency Synthesizer (UWB 주파수 합성기용 1 GHz 광 대역 시그마 델타 성긴 튜닝형 전압 제어 발진기)

  • Nam, Chul;Park, An-Su;Park, Joon-Sung;Pu, Young-Gun;Hur, Jeong;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.8
    • /
    • pp.64-72
    • /
    • 2010
  • This paper presents a wide range VCO with fine coarse tuning step using a sigma-delta modulation technique for UWB frequency synthesizer. The proposed coarse tuning scheme provides the low effective frequency resolution without any degradation of phase noise performance. With three steps coarse tuning, the VCO has wide tuning range and fine tuning step simultaneously. The frequency synthesizer with VCO was implemented with 0.13 ${\mu}m$ CMOS technology. The tuning range of the VCO is 5.8 GHz~6.8 GHz with the effective frequency resolution of 3.9 kHz. It achieves the measured phase noise of -108 dBc/Hz at 1 MHz offset and a tuning range 16.8 % with 5.9 mW power. The figure-of-merit with the tuning range is -181.5 dBc/Hz.

Frequency Characteristics of Micro-cantilever Sensor using Tuning Fork (튜닝포크형 미소 캔틸레버 센서의 주파수 특성)

  • Kim Choong Hyun;Ahn Hyo-Sok
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.5
    • /
    • pp.35-40
    • /
    • 2005
  • An experimental Investigation of the basic characteristics of a micro-cantilever sensor was performed by inspecting the amplitude and frequency characteristics of a commercial tuning fork (TF). Application of acetone and ethanol with a volume of $1{\mu}l$ on the tine of a vibrating tuning fork causes immediate response in its amplitude and frequency characteristics. It has been shown that the tuning fork has ability to recognize a chemical agent with high sensitivity. The theoretical sensitivity of mass loading is in the range of $\~0.1Hz/ng$. Quartz tuning forks are routinely made using standard microfabrication process, thus suggesting the possibility of microfabrication of micro quart sensors.

Robust Optical Detection Method for the Vibrational Mode of a Tuning Fork Crystal Oscillator

  • Choi, Hyo-Seung;Song, Sang-Hun
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.93-95
    • /
    • 2015
  • We present an optical detection method for the fundamental vibrational mode of a tuning fork crystal oscillator in air. A focused He/Ne laser beam is directed onto the edge of one vibrating tine of the tuning fork; its vibrating motion chops the incoming laser beam and modulates the intensity. The beam with modulated intensity is then detected and converted to an electrical signal by a high-speed photo-detector. This electrical signal is a sinusoid at the resonant frequency of the tuning fork vibration, which is 32.76 kHz. Our scheme is robust enough that the sinusoidal signal is detectable at up to $40^{\circ}$ of rotation of the tuning fork.

Self-Tuning PID Controller Based on PLC

  • Phonphithak, A.;Pannil, P.;Suesut, T.;Masuchun, R.;Julsereewong, P.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.272-276
    • /
    • 2004
  • The conventional PID (Proportional-Integral-Derivative) control technique is widely used for the process control in many industries since it is simple in structure and provides the good response. Nowadays, this control technique has been developed on the Programmable Logic Controller (PLC) to use for the process control loop. However, using this technique is difficult when tuning the PID parameters ($K_p$, $T_i$ and $T_d$) to achieve the best response. Moreover, trial-and-error procedure along with the operator experiences are required to obtain the best results when tuning the PID controller parameters. This paper proposes the self-tuning PID controller based on PLC for the process control in the industries. The proposed self-tuning PID controller uses the PLC-based PID structures to control the process production. The proposed PID tuning utilizes the PLC to synthesize and analyze controller parameter as well as to tune for appropriate parameters using Dahlin method and extrapolation. Experimental results using a self-tuning PID controller to control temperature of the oven show that the controller developed is capable of controlling the process very effectively and provides a good response.

  • PDF