• Title/Summary/Keyword: a micropolar

Search Result 32, Processing Time 0.044 seconds

A Similarity Solution of the Characteristics of Micropolar Fluid Flow in the Vicinity of a Wedge (상사해법을 이용한 쐐기형 물체 주위의 미세 극성유체 유동 특성에 관한 연구)

  • Kim, Youn J.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.969-977
    • /
    • 1999
  • A similarity solution of a steady laminar flow of micropolar fluids past wedges has been studied. The similarity variables found by Falkner and Skan are employed to reduce the streamwise-dependence in the coupled nonlinear boundary layer equations. Numerical solutions of the equations are then obtained using the fourth-order Runge-Kutta method and the distribution of velocity, micro-rotation, shear and couple stress across the boundary layer are obtained. These results are compared with the corresponding flow problems for Newtonian fluid past wedges with various wedge angles. Numerical results show that, keeping ${\beta}$ constant, the skin friction coefficient is lower for a micropolar fluid, as compared to a Newtonian fluid. For the case of constant material parameter K, however, the velocity distribution for a micropolar fluid is higher than that of a Newtonian fluid.

Reflection and propagation of plane waves at free surfaces of a rotating micropolar fibre-reinforced medium with voids

  • Anya, Augustine Igwebuike;Khan, Aftab
    • Geomechanics and Engineering
    • /
    • v.18 no.6
    • /
    • pp.605-614
    • /
    • 2019
  • The present paper seeks to investigate propagation and reflection of waves at free surfaces of homogeneous, anisotropic and rotating micropolar fibre-reinforced medium with voids. It has been observed that, in particular when P-wave is incident on the free surface, there exist four coupled reflected plane waves traveling in the medium; quasi-longitudinal displacement (qLD) wave, quasi-transverse displacement (qTD) wave, quasi-transverse microrotational wave and a wave due to voids. Normal mode Analysis usually called harmonic solution method is adopted in concomitant with Snell's laws and appropriate boundary conditions in determination of solution to the micropolar fibre reinforced modelled problem. Amplitude ratios which correspond to reflected waves in vertical and horizontal components are presented analytically. Also, the Reflection Coefficients are presented using numerical simulated results in graphical form for a particular chosen material by the help of Mathematica software. We observed that the micropolar fibre-reinforced, voids and rotational parameters have various degrees of effects to the modulation, propagation and reflection of waves in the medium. The study would have impact to micropolar fibre-reinforecd rotational-acoustic machination fields and future works about behavior of seismic waves.

Analysis of post-failure response of sands using a critical state micropolar plasticity model

  • Manzari, Majid T.;Yonten, Karma
    • Interaction and multiscale mechanics
    • /
    • v.4 no.3
    • /
    • pp.187-206
    • /
    • 2011
  • Accurate estimations of pre-failure deformations and post-failure responses of geostructures require that the simulation tool possesses at least three main ingredients: 1) a constitutive model that is able to describe the macroscopic stress-strain-strength behavior of soils subjected to complex stress/strain paths over a wide range of confining pressures and densities, 2) an embedded length scale that accounts for the intricate physical phenomena that occur at the grain size scale in the soil, and 3) a computational platform that allows the analysis to be carried out beyond the development of an initially "contained" failure zone in the soil. In this paper, a two-scale micropolar plasticity model will be used to incorporate all these ingredients. The model is implemented in a finite element platform that is based on the mechanics of micropolar continua. Appropriate finite elements are developed to couple displacement, micro-rotations, and pore-water pressure in form of $u_n-{\phi}_m$ and $u_n-p_m-{\phi}_m$ (n > m) elements for analysis of dry and saturated soils. Performance of the model is assessed in a biaxial compression test on a slightly heterogeneous specimen of sand. The role of micropolar component of the model on capturing the post-failure response of the soil is demonstrated.

A viscoelastic-micropolar solid with voids and microtemperatures under the effect of the gravity field

  • Said, Samia M.
    • Geomechanics and Engineering
    • /
    • v.31 no.2
    • /
    • pp.159-166
    • /
    • 2022
  • The model of two-dimensional plane waves is analyzed in a micropolar-thermoelastic solid with microtemperatures in the context of the three-phase-lag model, dual-phase-lag model, and the Green-Naghdi theory of type III. Harmonic wave analysis is used to hold the solution to the problem. Numerical results of the physical fields are visualized to show the effects of the gravity field, magnetic field, and viscosity. The expression for the field variables is obtained generally and represented graphically for a particular medium.

Effect of microtemperatures for micropolar thermoelastic bodies

  • Marin, Marin;Baleanu, Dumitru;Vlase, Sorin
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.381-387
    • /
    • 2017
  • In this paper we investigate the theory of micropolar thermoelastic bodies whose micro-particles possess microtemperatures. We transform the mixed initial boundary value problem into a temporally evolutionary equation on a Hilbert space and after that we prove the existence and uniqueness of the solution. We also approach the study of the continuous dependence of solution upon initial data and loads.

Relaxed Saint-Venant principle for thermoelastic micropolar diffusion

  • Marin, Marin;Abbas, Ibrahim;Kumar, Rajneesh
    • Structural Engineering and Mechanics
    • /
    • v.51 no.4
    • /
    • pp.651-662
    • /
    • 2014
  • The main goal of this study is to extend the domain of influence result to cover the micropolar thermoelastic diffusion. So, we prove that for a finite time t>0 the displacement field $u_i$, the microrotation vector ${\varphi}_i$, the temperature ${\theta}$ and the chemical potential P generate no disturbance outside a bounded domain $B_t$.

TIME PERIODIC SOLUTION FOR THE COMPRESSIBLE MAGNETO-MICROPOLAR FLUIDS WITH EXTERNAL FORCES IN ℝ3

  • Qingfang Shi;Xinli Zhang
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.587-618
    • /
    • 2023
  • In this paper, we consider the existence of time periodic solutions for the compressible magneto-micropolar fluids in the whole space ℝ3. In particular, we first solve the problem in a sequence of bounded domains by the topological degree theory. Then we obtain the existence of time periodic solutions in ℝ3 by a limiting process.

Analysis of Microchannel Flow Fields Using Micropolar Fluid Theory (미세극성유체 이론을 이용한 마이크로 채널내의 유동장 해석)

  • Choi, G.W.;Kim, J.H.;Kim, Youn-J.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.196-201
    • /
    • 2001
  • In this paper, we have described the microchannel fluid behavior in a slot between rotating curvilinear surfaces of revolution using micropolar fluid theory. ]n order to solve this problem, we have used boundary layer equations and applied non-zero values of the microrotation vector on the wall. The results are compared with the corresponding flow problems for Newtonian fluid. Results show that both the velocity distribution and the microrotation component distribution for a micropolar fluid are lower than that of a Newtonian fluid.

  • PDF

Shear waves propagation in an initially stressed piezoelectric layer imperfectly bonded over a micropolar elastic half space

  • Kumar, Rajneesh;Singh, Kulwinder;Pathania, D.S.
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.121-129
    • /
    • 2019
  • The present study investigates the propagation of shear waves in a composite structure comprised of imperfectly bonded piezoelectric layer with a micropolar half space. Piezoelectric layer is considered to be initially stressed. Micropolar theory of elasticity has been employed which is most suitable to explain the size effects on small length scale. The general dispersion equations for the existence of waves in the coupled structure are obtained analytically in the closed form. Some particular cases have been discussed and in one particular case the dispersion relation is in well agreement to the classical-Love wave equation. The effects of various parameters viz. initial stress, interfacial imperfection and micropolarity on the phase velocity are obtained for electrically open and mechanically free system. Numerical computations are carried out and results are depicted graphically to illustrate the utility of the problem. The phase velocity of the shear waves is found to be influenced by initial stress, interface imperfection and the presence of micropolarity in the elastic half space. The theoretical results obtained are useful for the design of high performance surface acoustic devices.

Effect of the gravity on a nonlocal micropolar thermoelastic media with the multi-phase-lag model

  • Samia M. Said
    • Geomechanics and Engineering
    • /
    • v.36 no.1
    • /
    • pp.19-26
    • /
    • 2024
  • Erigen's nonlocal thermoelasticity model is used to study the effect of viscosity on a micropolar thermoelastic solid in the context of the multi-phase-lag model. The harmonic wave analysis technique is employed to convert partial differential equations to ordinary differential equations to get the solution to the problem. The physical fields have been presented graphically for the nonlocal micropolar thermoelastic solid. Comparisons are made with the results of three theories different in the presence and absence of viscosity as well as the gravity field. Comparisons are made with the results of three theories different for different values of the nonlocal parameter. Numerical computations are carried out with the help of Matlab software.