• Title/Summary/Keyword: a frequency response

Search Result 4,799, Processing Time 0.031 seconds

A Simulation of Forcing Function for the Piping Vibration in Petrochemical Plants (석유화학 플랜트에서 배관 가진 함수의 시뮬레이션에 관한 연구)

  • 민선규;최명진;김경훈
    • Journal of the Korea Society for Simulation
    • /
    • v.10 no.4
    • /
    • pp.1-10
    • /
    • 2001
  • For the simulation of piping vibrations in petrochemical plants, forcing functions mainly depend upon the equipment working mechanism and vibration resources in the piping systems. In general, harmonic function is used to simulate rotary equipment. Mechanical driving frequencies, wave functions, and response spectrum are used to simulate reciprocating compressors, surge vibration of long transfer piping, and seismic/wind vibration, respectively. In this study, the general suggestions for forcing functions were reviewed and proposed the forcing function to simulate the spray injection system inside the pipe in which two different fluids are distributed uniformly. To confirm the results, the scheme was applied for a real piping system. The vibration mode of the real system was consistent with the 4th mode (26.725 Hz) obtained by simulation using the forcing function presented in this study.

  • PDF

Time Domain Soil-Structure Interaction Analysis for Earthquake Loadings Based on Analytical Frequency-Dependent Infinite Elements (무한요소를 사용한 지반-구조물 상호작용계의 시간 영역 지진응답해석)

  • 김두기
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.107-112
    • /
    • 1999
  • This paper presents a time domain method for soil-structure interaction analysis for seismic loadings. It is based on the finite element formulation incorporating analytical frequency-dependent infinite elements for the far-field soil. The dynamic stiffness matrices of the far-field region formulated in frequency domain using the present method can be easily transformed into the corresponding matrices in time domain. Hence the response can be analytical computed in time domain. Example analysis has been carried out to verify the present method for an embedded block in a multi-layered half-space. The present methods can be easily extended to the nonlinear analysis since the response analysis is carried out in time domain.

  • PDF

Optimum parameters and performance of tuned mass damper-inerter for base-isolated structures

  • Jangid, Radhey Shyam
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.549-560
    • /
    • 2022
  • The optimum damping and tuning frequency ratio of the tuned mass damper-inerter (TMDI) for the base-isolated structure is obtained using the numerical searching technique under stationary white-noise and filtered white-noise earthquake excitation. The minimization of the isolated structure's mean-square relative displacement and absolute acceleration, as well as the maximization of the energy dissipation index, were chosen as the criteria for optimality. Using a curve-fitting technique, explicit formulae for TMDI damping and tuning frequency for white-noise excitation are then derived. The proposed empirical expressions for TMDI parameters are found to have a negligible error, making them useful for the effective design of base-isolated structures. The effectiveness of TMDI and its optimum parameters are influenced by the soil condition and isolation frequency, according to the comparison made of the optimized parameters and response with different soil profiles. The effectiveness of an optimally designed TMDI in controlling the displacement and acceleration response of the flexible isolated structure under real and pulse-type earthquakes is also observed and found to be increased as the inertance mass ratio increases.

Structural Dynamic Modification Using substructure Response Function Sensitivity Method(SRFSM) (부분구조응답함수감소법을 이용한 동적구조변경)

  • Ji, Tae-Han;Park, Yeong-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3782-3791
    • /
    • 1996
  • A great deal of effert has been invested in upgrading the performance and the efficiency of mechanical structures. Using experimental modal analysis(EMA) or finite element analysis(FEA) data of mechanical structures, this performance and efficiency can be effectively evaluated. In order to analyze complex structures such as automobiles and aircraft, for the sake of computing efficiency, the dynamic substructuring techniques that allow to predict the dynamic behavior of a structure based on that of the composing structures, are widely used. By llinking a modal model obtained from EMA and an analytical model obtained from FEA, the best conditioned structures can be desinged. In this paper, a new algorithm for structural dynamic modification-SRFSM (substructure response function sensitivity method) is proposed by linking frequency responce function synthesis and response function sensitivity. A mehtod to obtain response function sensitivity using direct derivative of mechanical impedance, is also used.

Evaluation of the Dynamic Modulus by using the Impact Resonance Testing Method (비파괴충격파 시험법을 이용한 동탄성계수 평가)

  • Kim, Dowan;Jang, ByungKwan;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.16 no.3
    • /
    • pp.35-41
    • /
    • 2014
  • PURPOSES : The dynamic modulus for a specimen can be determined by using either the non-destructed or destructed testing method. The Impact Resonance Testing (IRT) is the one of the non-destructed testing methods. The MTS has proved the source credibility and has the disadvantages which indicate the expensive equipment to operate and need a lot of manpower to manufacture the specimens because of the low repeatability with an experiment. To overcome these shortcomings from MTS, the objective of this paper is to compare the dynamic modulus obtained from IRT with MTS result and prove the source credibility. METHODS : The dynamic modulus obtained from IRT could be determined by using the Resonance Frequency (RF) from the Frequency Response Function (FRF) that derived from the Fourier Transform based on the Frequency Analysis of the Digital Signal Processing (DSP)(S. O. Oyadigi; 1985). The RF values are verified from the Coherence Function (CF). To estimate the error, the Root Mean Squared Error (RMSE) method could be used. RESULTS : The dynamic modulus data obtained from IRT have the maximum error of 8%, and RMSE of 2,000MPa compared to the dynamic modulus measured by the Dynamic Modulus Testing (DMT) of MTS testing machine. CONCLUSIONS : The IRT testing method needs the prediction model of the dynamic modulus for a Linear Visco-Elastic (LVE) specimen to improve the suitability.

Transient Response Characteristics of Vehicle Seatbelt (자동차 시트벨트의 과도응답 특성에 관한 연구)

  • Kim, Chang-Hee;Lee, Seok-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.71-77
    • /
    • 2020
  • In recent years, as a consequence of the technological advancements in the automobile industry and changes in consumer demands, the reduction of noise inside vehicles rather than vehicle performance has increasingly become an important factor of interest. To date, most studies have focused on noise and vibration reduction techniques for the engine and drive system of vehicles. In this research, a comparative analysis for reducing the effect of vehicle seatbelts on the transient response is performed using the test of vehicle conditions and transient response analysis in accordance with seatbelt conditions. After the sensitivity analysis, the specifications for improvement were designed based on the transient response analysis. It was confirmed that the transient response characteristics were improved by the transient response analysis and vehicle conditions test. Through computer-aided engineering, the transient response characteristics of seatbelts were checked with less cost and time.

Improved Physical Layer Implementation of VANETs

  • Khan, Latif Ullah;Khattak, M. Irfan;Khan, Naeem;Khan, Atif Sardar;Shafi, M.
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.3
    • /
    • pp.142-152
    • /
    • 2014
  • Vehicular Ad-hoc Networks (VANETs) are comprised of wireless mobile nodes characterized by a randomly changing topology, high mobility, availability of geographic position, and fewer power constraints. Orthogonal Frequency Division Multiplexing (OFDM) is a promising candidate for the physical layer of VANET because of the inherent characteristics of the spectral efficiency and robustness to channel impairments. The susceptibility of OFDM to Inter-Carrier Interference (ICI) is a challenging issue. The high mobility of nodes in VANET causes higher Doppler shifts, which results in ICI in the OFDM system. In this paper, a frequency domain com-btype channel estimation was used to cancel out ICI. The channel frequency response at the pilot tones was estimated using a Least Square (LS) estimator. An efficient interpolation technique is required to estimate the channel at the data tones with low interpolation error. This paper proposes a robust interpolation technique to estimate the channel frequency response at the data subcarriers. The channel induced noise tended to degrade the Bit Error Rate (BER) performance of the system. Parallel concatenated Convolutional codes were used for error correction. At the decoding end, different decoding algorithms were considered for the component decoders of the iterative Turbo decoder. A performance and complexity comparison among the various decoding algorithms was also carried out.

Convolutional Neural Network-based Prediction of Bolt Clamping Force in Initial Bolt Loosening State Using Frequency Response Similarity (초기 볼트풀림 상태의 볼트 체결력 예측을 위한 주파수응답 유사성 기반의 합성곱 신경망)

  • Jea Hyun Lee;Jeong Sam Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.4
    • /
    • pp.221-232
    • /
    • 2023
  • This paper presents a novel convolutional neural network (CNN)-based approach for predicting bolt clamping force in the early bolt loosening state of bolted structures. The approach entails tightening eight bolts with different clamping forces and generating frequency responses, which are then used to create a similarity map. This map quantifies the magnitude and shape similarity between the frequency responses and the initial model in a fully fastened state. Krylov subspace-based model order reduction is employed to efficiently handle the large amount of frequency response data. The CNN model incorporates a regression output layer to predict the clamping forces of the bolts. Its performance is evaluated by training the network by using various amounts of training data and convolutional layers. The input data for the model are derived from the magnitude and shape similarity map obtained from the frequency responses. The results demonstrate the diagnostic potential and effectiveness of the proposed approach in detecting early bolt loosening. Accurate bolt clamping force predictions in the early loosening state can thus be achieved by utilizing the frequency response data and CNN model. The findings afford valuable insights into the application of CNNs for assessing the integrity of bolted structures.

Load Carrying Capacity Evaluation of Single Span Bridge using Impact Factor Response Spectrum (충격계수 응답스펙트럼을 이용한 단경간 교량의 내하력 평가)

  • Lee, Huseok;Roh, Hwasung;Park, Kyung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.730-736
    • /
    • 2016
  • In a previous study, the impact factor response spectrum and corresponding method for evaluating the load carrying capacity of bridges was suggested to improve the existing evaluation method. To verify the applicability of the suggested method, which is based on the frequency of bridges, the dynamic characteristic test for an actual single span simply-supported bridge was conducted. Through a field test under ambient traffic conditions, the dynamic response of the bridge was obtained using wireless accelometers and its fundamental frequency was identified. The peak impact factor was determined from the identified frequency and the impact factor response spectrum. The load carrying performance variation of the bridge was estimated considering the performance reduction factor, which was calculated using the current and previous natural frequency and impact factor. From the result, the load carrying capacity of the bridge was decreased, but the capacity was still enough because its value is greater than the design live load. Through the overall procedures and technical details presented in this paper, the suggested evaluation method can be applied to actual bridges with the acceleration data measured under ambient traffic conditions and the impact factor response spectrum.

Natural Frequency of 2-Dimensional Cylinders in Heaving; Frequency-Domain Analysis (상하동요하는 2차원 주상체의 고유진동수; 주파수 영역 해석)

  • Song, Je-Ha;Lee, Seung-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.1
    • /
    • pp.25-33
    • /
    • 2015
  • Following the previous works on the natural frequency of heaving circular cylinder, i.e. Lee and Lee (2013) and Kim and Lee (2013), an investigation of the same spirit on the 2-dimensional cylinder of Lewis form has been conducted. As before, the natural frequency is defined as that corresponding to the local maximum of the MCFR (Modulus of Complex Frequency Response), which is given by the equation of motion in the frequency domain analysis. Hydrodynamic coefficients were found by using the Ursell-Tasai method, and numerical results for them were obtained up to much higher frequencies than before, for which the method was known as numerically unstable in the past. For a wide range of H, the beam-draft ratio, and ${\sigma}$, the sectional area coefficient, including their practical ranges for a ship, results for the natural frequency were computed and presented in this work. Two approximate values for the natural frequency, one proposed by Lee (2008) and another one by the damped harmonic oscillator, were also compared with the current results, and for most cases it was observed that the current result is between the two values. Our numerical results showed that the values of the local maximum of MCFR as well as the natural frequencye increase as ${\sigma}$ increases while H decreases. At present, extension of the present finding to the 3-dimensional ship via the approximate theory like the strip method looks promising.