• Title/Summary/Keyword: a error model

Search Result 7,329, Processing Time 0.04 seconds

Measurement Error Modeling for On-Machine Measurement of Sculptured Surfaces

  • Cho, Myeong-Woo;Lee, Se-Hee;Seo, Tae-Il
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.73-80
    • /
    • 2001
  • The objective of this research is to develop a measurement error model for sculptured surface in On-Machine Measurement(OMM) process based on a closed-loop configuration. The geometric error model of each axis of a vertical CNC machining center is derived using a 4$\times$4 homogeneous transformation matrix. The ideal locations of a touch-type probe for the sculptured surface measurement are calculated from the parametric surface representation and X-, Y- directional geometric errors of the machine. Also the actual coordinates of the probe are calculated by considering the pre-travel variation of a probe and Z-directional geometric errors. Then, the step-by-sep measurement error analysis method is suggested based on a closed-loop configuration of the machining center including workpiece and probe errors. The simulation study shows the simplicity and effectiveness of the proposed error modeling strategy.

  • PDF

On-Machine Measurement of Sculptured Surfaces Based on CAD/CAM/CAI Integration : I. Measurement Error Modeling (CAD/CAM/CAI 통합에 기초한 자유곡면의 On-Machine Measurement : I. 측정오차 모델링)

  • Cho, Myeong-Woo;Lee, Se-Hee;Seo, Tae-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.172-181
    • /
    • 1999
  • The objective of this research is to develop a measurement error model for sculptured surfaces in On-Machine Measurement (OMM) process based on a closed-loop configuration. The geometric error model of each axis of a vertical CNC Machining center is derived using a 4${\times}$4 homogeneous transformation matrix. The ideal locations of a touch-type probe for the scupltured surface measurement are calculated from the parametric surface representation and X-, Y- directional geometric errors of the machine. Also, the actual coordinates of the probe are calculated by considering the pre-travel variation of a probe and Z-directional geometric errors. Then, the step-by-step measurement error analysis method is suggested based on a closed-loop configuration of the machining center including workpiece and probe errors. The simulation study shows the simplicity and effectiveness of the proposed error modeling strategy.

  • PDF

A Study Software Reliability Model Using Error-Class (오류 분류를 이용한 소프트웨어 신뢰도 모델)

  • Jo, Yeong-Sik;Lee, Yong-Geun;Choe, Hyeong-Jin;Yang, Hae-Sul
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.2
    • /
    • pp.231-241
    • /
    • 1996
  • The reliability in software has expand in quality and quantity, also its importance and role are increased. But, a study of software reliability is lack of development. this paper software reliability growth models(SRGM) described by NonHome-geneous Poisson(NHPP)processes. Using actual software error data observed by software testing the SRGM's are composition of error-class, and error-class by three class. this paper made the reliability-model of software using three error- class. The purpose of this study to increase software productivity and to improve software quality. So to achive these goals we focused a study of software reliability model using the error-class.

  • PDF

Radio Propagation Model and Spatial Correlation Method-based Efficient Database Construction for Positioning Fingerprints (위치추정 전자지문기법을 위한 전파전달 모델 및 공간상관기법 기반의 효율적인 데이터베이스 생성)

  • Cho, Seong Yun;Park, Joon Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.774-781
    • /
    • 2014
  • This paper presents a fingerprint database construction method for WLAN RSSI (Received Signal Strength Indicator)-based indoor positioning. When RSSI is used for indoor positioning, the fingerprint method can achieve more accurate positioning than trilateration and centroid methods. However, a FD (Fingerprint Database) must be constructed before positioning. This step is a very laborious process. To reduce the drawbacks of the fingerprint method, a radio propagation model-based FD construction method is presented. In this method, an FD can be constructed by a simulator. Experimental results show that the constructed FD-based positioning has a 3.17m (CEP) error. In this paper, a spatial correlation method is presented to estimate the NLOS(Non-Line of Sight) error included in the FD constructed by a simulator. As a result, the NLOS error of the FD is reduced and the performance of the error compensated FD-based positioning is improved. The experimental results show that the enhanced FD-based positioning has a 2.58m (CEP) error that is a reasonable performance for indoor LBS (Location Based Service).

Frequency Weighted Model Reduction Using Structurally Balanced Realization

  • Oh, Do-Chang;Kim, Jong-Hae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.366-370
    • /
    • 2003
  • This paper is on weighted model reduction using structurally balanced truncation. For a given weighted(single or double-sided) transfer function, a state space realization with the linear fractional transformation form is obtained. Then we prove that two block diagonal LMI(linear matrix inequality) solutions always exist, and it is possible to get a reduced order model with guaranteed stability and a priori error bound. Finally, two examples are used to show the validity of proposed weighted reduction method, and the method is compared with other existing methods.

  • PDF

A Closed-Form Bayesian Inferences for Multinomial Randomized Response Model

  • Heo, Tae-Young;Kim, Jong-Min
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.1
    • /
    • pp.121-131
    • /
    • 2007
  • In this paper, we examine the problem of estimating the sensitive characteristics and behaviors in a multinomial randomized response model using Bayesian approach. We derived a posterior distribution for parameter of interest for multinomial randomized response model. Based on the posterior distribution, we also calculated a credible intervals and mean squared error (MSE). We finally compare the maximum likelihood estimator and the Bayes estimator in terms of MSE.

Interval Estimation for Sum of Variance Components in a Simple Linear Regression Model with Unbalanced Nested Error Structure

  • Park, Dong-Joon
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.361-370
    • /
    • 2003
  • Those who are interested in making inferences concerning linear combination of valiance components in a simple linear regression model with unbalanced nested error structure can use the confidence intervals proposed in this paper. Two approximate confidence intervals for the sum of two variance components in the model are proposed. Simulation study is peformed to compare the methods. The methods are applied to a numerical example and recommendations are given for choosing a proper interval.

An evolutionary approach for predicting the axial load-bearing capacity of concrete-encased steel (CES) columns

  • Armin Memarzadeh;Hassan Sabetifar;Mahdi Nematzadeh;Aliakbar Gholampour
    • Computers and Concrete
    • /
    • v.31 no.3
    • /
    • pp.253-265
    • /
    • 2023
  • In this research, the gene expression programming (GEP) technique was employed to provide a new model for predicting the maximum loading capacity of concrete-encased steel (CES) columns. This model was developed based on 96 CES column specimens available in the literature. The six main parameters used in the model were the compressive strength of concrete (fc), yield stress of structural steel (fys), yield stress of steel rebar (fyr), and cross-sectional areas of concrete, structural steel, and steel rebar (Ac, As and Ar respectively). The performance of the prediction model for the ultimate load-carrying capacity was investigated using different statistical indicators such as root mean square error (RMSE), correlation coefficient (R), mean absolute error (MAE), and relative square error (RSE), the corresponding values of which for the proposed model were 620.28, 0.99, 411.8, and 0.01, respectively. Here, the predictions of the model and those of available codes including ACI ITG, AS 3600, CSA-A23, EN 1994, JGJ 138, and NZS 3101 were compared for further model assessment. The obtained results showed that the proposed model had the highest correlation with the experimental data and the lowest error. In addition, to see if the developed model matched engineering realities and corresponded to the previously developed models, a parametric study and sensitivity analysis were carried out. The sensitivity analysis results indicated that the concrete cross-sectional area (Ac) has the greatest effect on the model, while parameter (fyr) has a negligible effect.

Adaptive Control of A One-Link Flexible Robot Manipulator (유연한 로보트 매니퓰레이터의 적응제어)

  • 박정일;박종국
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.5
    • /
    • pp.52-61
    • /
    • 1993
  • This paper deals with adaptive control method of a robot manipulator with one-flexible link. ARMA model is used as a prediction and estimation model, and adaptive control scheme consists of parameter estimation part and adaptive controller. Parameter estimation part estimates ARMA model's coefficients by using recursive least-squares(RLS) algorithm and generates the predicted output. Variable forgetting factor (VFF) is introduced to achieve an efficient estimation, and adaptive controller consists of reference model, error dynamics model and minimum prediction error controller. An optimal input is obtained by minimizing input torque, it's successive input change and the error between the predicted output and the reference output.

  • PDF

Measurement Error Model with Skewed Normal Distribution (왜도정규분포 기반의 측정오차모형)

  • Heo, Tae-Young;Choi, Jungsoon;Park, Man Sik
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.6
    • /
    • pp.953-958
    • /
    • 2013
  • This study suggests a measurement error model based on skewed normal distribution instead of normal distribution to identify slope parameter properties in a simple liner regression model. We prove that the slope parameter in a simple linear regression model is underestimated.