• Title/Summary/Keyword: a conditional probability

Search Result 294, Processing Time 0.027 seconds

Estimation of drought risk through the bivariate drought frequency analysis using copula functions (코플라 함수를 활용한 이변량 가뭄빈도해석을 통한 우리나라 가뭄 위험도 산정)

  • Yu, Ji Soo;Yoo, Ji Young;Lee, Joo-Heon;Kim, Tea-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.3
    • /
    • pp.217-225
    • /
    • 2016
  • The drought is generally characterized by duration and severity, thus it is required to conduct the bivariate frequency analysis simultaneously considering the drought duration and severity. However, since a bivariate joint probability distribution function (JPDF) has a 3-dimensional space, it is difficult to interpret the results in practice. In order to suggest the technical solution, this study employed copula functions to estimate an JPDF, then developed conditional JPDFs on various drought durations and estimated the critical severity corresponding to non-exceedance probability. Based on the historical severe drought events, the hydrologic risks were investigated for various extreme droughts with 95% non-exceedance probability. For the drought events with 10-month duration, the most hazardous areas were decided to Gwangju, Inje, and Uljin, which have 1.3-2.0 times higher drought occurrence probabilities compared with the national average. In addition, it was observed that southern regions were much higher drought prone areas than northern and central areas.

How to incorporate human failure event recovery into minimal cut set generation stage for efficient probabilistic safety assessments of nuclear power plants

  • Jung, Woo Sik;Park, Seong Kyu;Weglian, John E.;Riley, Jeff
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.110-116
    • /
    • 2022
  • Human failure event (HFE) dependency analysis is a part of human reliability analysis (HRA). For efficient HFE dependency analysis, a maximum number of minimal cut sets (MCSs) that have HFE combinations are generated from the fault trees for the probabilistic safety assessment (PSA) of nuclear power plants (NPPs). After collecting potential HFE combinations, dependency levels of subsequent HFEs on the preceding HFEs in each MCS are analyzed and assigned as conditional probabilities. Then, HFE recovery is performed to reflect these conditional probabilities in MCSs by modifying MCSs. Inappropriate HFE dependency analysis and HFE recovery might lead to an inaccurate core damage frequency (CDF). Using the above process, HFE recovery is performed on MCSs that are generated with a non-zero truncation limit, where many MCSs that have HFE combinations are truncated. As a result, the resultant CDF might be underestimated. In this paper, a new method is suggested to incorporate HFE recovery into the MCS generation stage. Compared to the current approach with a separate HFE recovery after MCS generation, this new method can (1) reduce the total time and burden for MCS generation and HFE recovery, (2) prevent the truncation of MCSs that have dependent HFEs, and (3) avoid CDF underestimation. This new method is a simple but very effective means of performing MCS generation and HFE recovery simultaneously and improving CDF accuracy. The effectiveness and strength of the new method are clearly demonstrated and discussed with fault trees and HFE combinations that have joint probabilities.

Development of PBD Method for Concrete Mix Proportion Design Using Bayesian Probabilistic Method (Bayesian 통계법을 활용한 성능기반형 콘크리트 배합설계방법 개발)

  • Kim, Jang-Ho Jay;Phan, Duc-Hung;Lee, Keun-Sung;Yi, Na-Hyun;Kim, Sung-Bae
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.171-177
    • /
    • 2010
  • Recently, Performance Based Design (PBD) method has been studied as a next generation structural design method, which enables a designed structure to satisfy the required performance during its service life. One method of deciding whether the required performance has been satisfied is Bayesian method, which has been commonly used in seismic analysis. Generally, it is presented as a conditional probability of exceeding some limit state (i.e., collapse) for a given ground motion. In PBD of concrete mixture design, the same methodology can be applied to assess concrete material performance based on some conditional parameters (i.e. strength, workability, carbonation, etc). In this paper, a detailed explanation of the procedure of drawing satisfaction curve by using Bayesian method based on various material parameters is shown. Also, a discussion of using the developed satisfaction curves for PBD for concrete mixture design is presented.

Probable annual maximum of daily snowfall using improved probability distribution (개선된 확률밀도함수 적용을 통한 빈도별 적설심 산정)

  • Park, Heeseong;Chung, Gunhui
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.4
    • /
    • pp.259-271
    • /
    • 2020
  • In Korea, snow damage has happened in the region with little snowfalls in history. Also, accidental damage was caused by heavy snow leads and the public interest on heavy snow has been increased. Therefore, policy about the Natural Disaster Reduction Comprehensive Plan has been changed to include the mitigation measures of snow damage. However, since heavy snow damage was not frequent, studies on snowfall have not been conducted on different points. The characteristics of snow data commonly are not the same as the rainfall data. Some southern coastal areas in Korea are snowless during the year. Therefore, a joint probability distribution was suggested to analyze the snow data with many 0s in a previous research and fitness from the joint probability distribution was higher than the conventional methods. In this study, snow frequency analysis was implemented using the joint probability distribution and compared to the design codes. The results were compared to the design codes. The results of this study can be used as the basic data to develop a procedure for the snow frequency analysis in the future.

Channel Input-Traffic Control of FH/SSMA Systems with a Centralized Controller (기지국이 있는 주파수 도약 대역확산 통신 시스템에서의 채널 입력 트래픽 제어)

  • 김석찬;김정곤;송익호;김형명
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.1
    • /
    • pp.175-186
    • /
    • 1996
  • An optimal channel input-traffic control (OCIC) policy is proposed for slotted frequency-hopped spread-spectrum multiple access communication systems. When the number of channel input packets is set to the optimal number, the conditional throughput for the OCIC policy is analyzed. The state transition probability is derived, the steady state performance is analyzed, and the mean pracket delay is obtained. It is shown that the mean packet delay decreases considerably when the priority of transmission is given to backlogged users. The smaller is the number of requency slots, the larger are the differences between the preformance of the OCIC policy and that of the other policies.

  • PDF

Error Intensity Function Models for ML Estimation of Signal Parameter, Part I : Model Derivation (신호 파라미터의 ML 추정기법에 대한 에러 밀도 함수 모델에 관한 연구 I : 모델 정립)

  • Joong Kyu Kim
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.12
    • /
    • pp.1-11
    • /
    • 1993
  • This paper concentrates on models useful for analyzing the error performance of ML(Maximum Likelihood) estimators of a single unknown signal parameter: that is the error intensity model. We first develop the point process representation for the estimation error and the conditional distribution of the estimator as well as the distribution of error candidate point process. Then the error intensity function is defined as the probability dessity of the estimate and the general form of the error intensity function is derived. We then develop several intensity models depending on the way we choose the candidate error locations. For each case, we compute the explicit form of the intensity function and discuss the trade-off among models as well as the extendability to the case of multiple parameter estimation.

  • PDF

A DATA COMPRESSION METHOD USING ADAPTIVE BINARY ARITHMETIC CODING AND FUZZY LOGIC

  • Jou, Jer-Min;Chen, Pei-Yin
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.756-761
    • /
    • 1998
  • This paper describes an in-line lossless data compression method using adaptive binary arithmetic coding. To achieve better compression efficiency , we employ an adaptive fuzzy -tuning modeler, which uses fuzzy inference to deal with the problem of conditional probability estimation. The design is simple, fast and suitable for VLSI implementation because we adopt the table -look-up approach. As compared with the out-comes of other lossless coding schemes, our results are good and satisfactory for various types of source data.

  • PDF

A distance metric of nominal attribute based on conditional probability (조건부 확률에 기반한 범주형 자료의 거리 측정)

  • 이재호;우종하;오경환
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.53-56
    • /
    • 2003
  • 유사도 혹은 자료간의 거리 개념은 많은 기계학습 알고리즘에서 사용되고 있는 중요한 측정개념이다 하지만 입력되는 자료의 속성들중 순서가 정의되지 않은 범주형 속성이 포함되어 있는 경우, 자료간의 유사도나 거리 측정에 어려움이 따른다. 비거리 기반의 알고리즘들의 경우-C4.5, CART-거리의 측정없이 작동할 수 있지만, 거리기반의 알고리즘들의 경우 범주형 속성의 거리 정보 결여로 효과적으로 적용될 수 없는 문제점을 갖고 있다. 본 논문에서는 이러한 범주형 자료들간 거리 측정을 자료 집합의 특성을 충분히 고려한 방법을 제안한다. 이를 위해 자료 집합의 선험적인 정보를 필요로 한다. 이런 선험적 정보인 조건부 확률을 기반으로한 거리 측정방법을 제시하고 오류 피드백을 통해서 속성 간 거리 측정을 최적화 하려고 노력한다. 주어진 자료 집합에 대해 서로 다른 두 범주형 값이 목적 속성에 대해서 유사한 분포를 보인다면 이들 값들은 비교적 가까운 거리로 결정한다 이렇게 결정된 거리를 기반으로 학습 단계를 진행하며 이때 발생한 오류들에 대해 피드백 작업을 진행한다. UCI Machine Learning Repository의 자료들을 이용한 실험 결과를 통해 제안한 거리 측정 방법의 우수한 성능을 확인하였다.

  • PDF

On the member reliability of wind force-resisting steel frames designed by EN and ASCE rules of load combinations

  • Kudzys, Antanas;Kudzys, Algirdas
    • Wind and Structures
    • /
    • v.12 no.5
    • /
    • pp.425-439
    • /
    • 2009
  • The expediency of revising universal rules for the combination of gravity and lateral actions of wind force-resisting steel structures recommended by the Standards EN 1990 and ASCE/SEI 7-05 is discussed. Extreme wind forces, gravity actions and their combinations for the limit state design of structures are considered. The effect of statistical uncertainties of extreme wind pressure and steel yield strength on the structural safety of beam-column joints of wind force-resisting multistory steel frames designed by the partial factor design (PFD) and the load and resistance factor design (LRFD) methods is demonstrated. The limit state criterion and the performance process of steel frame joints are presented and considered. Their long-term survival probability analysis is based on the unsophisticated method of transformed conditional probabilities. A numerical example illustrates some discrepancies in international design standards and the necessity to revise the rule of universal combinations of loads in wind and structural engineering.

Performance Analysis of Noncoherent CDMA Systems Using Adaptive Array Antennas (Noncoherent CDMA 시스템에서의 적응 배열 안테나 성능 분석)

  • 박재홍;최동민정하송박한규
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.42-45
    • /
    • 1998
  • Adaptive array antenas have emerged as a useful technique to enhance the cell capacity of mobile communications. In this research, to analyze the noncoherent CDMA systems employing adaptive array antennas, we modeled the transmitting signal of CDMA systems using M-ary orthogonal modulation. And we induced the conditional probability density function about the decision variable, the output of 2D-RAKE receiver and mean symbol error prabability through statistical analysis about MAI(Multiple Access Interference), SI(Self Interference) and Noise. Also, we analyzed the charateristics of adaptive array antenna for noncoherent CDMA systems using M-ary orthogonal modulation according to the distance between the array elements, doppler frequency and AOS(Angle of Spread).

  • PDF