• 제목/요약/키워드: a acceleration set

검색결과 284건 처리시간 0.023초

웨어러블 단말의 가속도 센서를 이용한 수면 중 움직임 및 자세를 감지하는 방법 (A Method for Detecting Movement and Posture During Sleep Using an Acceleration Sensor of a Wearable Device)

  • 전영준;김상혁;강순주
    • 대한임베디드공학회논문지
    • /
    • 제17권1호
    • /
    • pp.1-7
    • /
    • 2022
  • The number of patients with many complications grows with the increase of aging population. As the elders and severely ill patients spend most of their time in bed, it leads to Pressure Injuries (PI) such as bedsores. Unfortunately, there is no method to automatically detect changes in patient's posture which leads to the need for a caregiver every set of times when the patient needs to be moved. Many studies are conducted to solve this inefficient problem. Yet, these studies require costly devices or use methods that disturb patient's sleeping environment. Those methods are mostly hard to implement in practice due to these reasons. We propose a method to detect posture using a three-axis acceleration sensor from the wrist band. We developed a wearable watch that measures sleep-related data. We analyzed 40 people's sleep data with a wearable module and watch to measure their postures such as supine, left-side, and right-side. Then, we compared the classified posture from the watch with the wearable module and achieved 90% accuracy. Therefore, we concluded that only by using the wearable watch, we can detect the sleeping position without any new equipment or system to diagnose the patients without discomfort during their daily lives.

ROLL AND PITCH ESTIMATION VIA AN ACCELEROMETER ARRAY AND SENSOR NETWORKS

  • Baek, W.;Song, B.;Kim, Y.;Hong, S.K.
    • International Journal of Automotive Technology
    • /
    • 제8권6호
    • /
    • pp.753-760
    • /
    • 2007
  • In this paper, a roll and pitch estimation algorithm using a set of accelerometers and wireless sensor networks(S/N) is presented for use in a passenger vehicle. While an inertial measurement unit(IMU) is generally used for roll/pitch estimation, performance may be degraded in the presence of longitudinal acceleration and yaw motion. To compensate for this performance degradation, a new roll and pitch estimation algorithm is proposed that uses an accelerometer array, global positioning system(GPS) and in-vehicle networks to get information from yaw rate and roll rate sensors. Angular acceleration and roll and pitch approximation are first calculated based on vehicle kinematics. A discrete Kalman filter is then applied to estimate both roll and pitch more precisely by reducing noise from the running engine and from road disturbance. Finally, the feasibility of the proposed algorithm is shown by comparing its performance experimentally with that of an IMU in the framework of an indoor test platform as well as a test vehicle.

Effect of Wave Load on the Member Force of Steel Structure of Floating Buildings

  • Lee, Young-Wook;Park, Tae-Jun
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1431-1439
    • /
    • 2018
  • For floating buildings may fl oat on the water for a long time, they are constantly affected by various environmental loads such as wind and wave loads. In this study to find the wave effect on the floating building, five models are designed using steel moment resisting frame. It is assumed that the lower part of the floating building is a reinforced concrete pontoon, while the upper part is a three-story steel frame. To analyze floating buildings affected by wind and wave loads, hydro-dynamic and substructure analysis are performed. As input loads, this study set limits that the mean wind velocity is 35 m/s and the significant wave height is 0.5 m for the residential building. From the hydrodynamic analysis, the time-history acceleration of building is obtained and transformed into a base ground input for a substructure analysis of the superstructure of the building. Finally the mean of the maximum from 30 dynamic analysis of the floating buildings are used to be compared with the results of the same model on the ground. It was shown that the dynamic results with wind and wave loads are not always lesser than the static results which are calculated with static equivalent wind load for a building that is located on the ground.

다중 센서를 이용한 위험 상황 감지 안전모 (Risk Situation Detection Safety Helmet using Multiple Sensors)

  • 최우용;김효상;고동현;이장훈;이승대
    • 한국전자통신학회논문지
    • /
    • 제17권6호
    • /
    • pp.1226-1274
    • /
    • 2022
  • 본 논문에서는 산업 재해의 주요 원인인 추락 및 낙상 사고와 가스 누출에 중점을 둔 위험 상황 감지 안전모를 다루었다. 가속도 센서를 이용한 중력 가속도 측정을 통해 추락 상황 범위를 설정하였으며, 그 결과 80%의 추락 및 낙상 감지율을 확인할 수 있었다. 또한 가스 센서를 통해 위험 가스 농도를 측정하여 시리얼 모니터를 통해 188 이상의 디지털 값이 출력될 경우 가스 위험 상황으로 판단하였다, 앱 인벤터 프로그램을 기반으로 제작한 스마트폰 어플을 통해 추락 및 낙상 상황 경고 메시지와 가스 경고 메시지를 확인할 수 있도록 구현하였다.

Use of large-scale shake table tests to assess the seismic response of a tunnel embedded in compacted sand

  • Zhou, Hao;Qin, Xiaoyang;Wang, Xinghua;Liang, Yan
    • Earthquakes and Structures
    • /
    • 제15권6호
    • /
    • pp.655-665
    • /
    • 2018
  • Shield tunnels are widely used throughout the world. However, their seismic performance has not been well studied. This paper focuses on the seismic response of a large scale model tunnel in compacted sand. A 9.3 m long, 3.7 m wide and 2.5 m high rigid box was filled with sand so as to simulate the sandy soil surrounding the tunnel. The setup was excited on a large-scale shake table. The model tunnel used was a 1:8 scaled model with a cross-sectional diameter of 900 mm. The effective shock absorbing layer (SAL) on the seismic response of the model tunnel was also investigated. The thickness of the tunnel lining is 60 mm. The earthquake motion recorded from the Kobe earthquake waves was used. The ground motions were scaled to have the same peak accelerations. A total of three peak accelerations were considered (i.e., 0.1 g, 0.2 g and 0.4 g). During the tests, the strain, acceleration and soil pressure on the surface of the tunnel were measured. In order to investigate the effect of shock absorbing layer on the dynamic response of the sand- tunnel system, two tunnel models were set up, one with and one without the shock absorbing layer of foam board were used. The results shows the longitudinal direction acceleration of the model tunnel with a shock absorbing layer were lower than those of model tunnel without the shock absorbing layer, Which indicates that the shock absorbing layer has a beneficial effect on the acceleration reduction. In addition, the shock absorbing layer has influence on the hoop strain and earth pressure of the model tunnel, this the effect of shock absorbing layer to the model tunnel will be discussed in the paper.

RMAC를 적용한 어뢰형 무인잠수정(ISiMi)의 수평면 경로추종 제어 (Path Tracking Control Based on RMAC in Horizontal Plane for a Torpedo-Shape AUV, ISiMi)

  • 김영식;이지홍;김진하;전봉환;이판묵
    • 한국해양공학회지
    • /
    • 제23권6호
    • /
    • pp.146-155
    • /
    • 2009
  • This paper considers the path tracking problem in a horizontal plane for underactuated (or non-holonomic) autonomous underwater vehicles (AUVs). Underwater mapping has been an important mission for AUVs. Recently, underwater docking has also become a main research field of AUVs. These kinds of missions basically require accurate attitude and trajectory control performance. However, the non-holonomic problem should be solved to achieve accurate path tracking for the torpedo-type of AUVs. In this paper, resolved motion and acceleration control (RMAC) is considered as a path tracking controller for an underactuated torpedo-shaped AUV, ISiMi. A set of numerical simulations is carried out to illustrate the effectiveness of the proposed RMAC scheme, and experimental data with ISiMi100 and discussions are presented.

발성이 작업수행 중 상지 움직임에 미치는 영향 (Effects of Vocalization on Upper Extremity Motion During Occupational Performance)

  • 박지혁;유은영;신수정;신혜경;김진경
    • 한국전문물리치료학회지
    • /
    • 제11권1호
    • /
    • pp.75-83
    • /
    • 2004
  • The purpose of this study was to research the effects of vocalization on upper extremity motion during occupational performance and to compare non-meaning and meaning vocalization. Experiments were performed on 30 subjects. They had no medical history of neurological problems with their upper extremities. Using a tea cup, a tea tray, and a tea spoon, they set a table during vocalization. We used meaning and non-meaning vocalization with the subjects. An example of meaning vocalization would be naming something, and an example of non-vocalization would be saying, "Ah." We used a 3-D analysis system called CMS-HS. We analyzed the motion in the angular velocity and acceleration of the elbow while recording performance time. The results of this study showed that vocalization enhanced the angular velocity and acceleration of the elbow, and also enhanced performance time. In short, vocalization improved upper extremity motion by making it faster and smoother. There were no significant differences between meaning and non-meaning vocalization.

  • PDF

밸브 기구의 동특성을 고려한 캠 형상 설계에 관한 연구 (A Study on Optimum Cam Profile Extraction Considering Dynamic Characteristics of a Cam-Valve System)

  • 박경조;전혁수;박윤식
    • 대한기계학회논문집
    • /
    • 제13권1호
    • /
    • pp.29-39
    • /
    • 1989
  • 본 논문에서는 우선 밸브 기구의 동적 특성을 보다 정교하게 묘사하기 위해서 4 자유도 집중 질량 모델을 세우고 시뮬레이션 결과와 실험 결과를 비교하여 실험을 더 잘 묘사할 수 있도록 모델을 개선하였다. 그리고 수립된 모델을 사용하여 밸브 변위, 속도, 가속도 특성 및 밸브 기구의 작동 오차를 정의하였다. 이 평균 자승 오차를 최소함으로써 중어진 캠 변위는 크게 변화시키지 않으면서 가속도 및 속도를 최소화한 캠을 설계하였다.

WiFi 통신 기반의 로봇제어를 위한 아이폰 인터페이스 연구 (Study of iPhone Interface for Remote Robot Control Based on WiFi Communication)

  • 정하민;김동헌
    • 한국지능시스템학회논문지
    • /
    • 제22권5호
    • /
    • pp.669-674
    • /
    • 2012
  • 본 논문은 아이폰을 사용하여 WiFi 통신을 기반으로 이동로봇을 원격 제어하는 연구에 대하여 다룬다. 무선제어를 위하여 다음과 같은 세 가지 인터페이스를 제안 한다 : 기울기 모드, 방향 터치 모드, 조그셔틀 모드. 세 가지 인터페이스를 평가하기 위해 모니터에 그려진 궤적을 아이폰의 인터페이스를 사용하여 가상 로봇을 제어 하였다. 세 가지 인터페이스의 장단점을 분석하기 위해 표준편차와 오차가 시뮬레이션에서 분석되었다. 제안된 인터페이스는 추가비용이 별도로 필요한 무선 제어기를 휴대폰으로 대체하게 해준다. 실험의 결과로 제안된 인터페이스들이 원격 로봇 제어를 위해 효과적으로 사용될 수 있음을 보여준다.

A Study on Evaluation of Whole-Body Vibration from Vehicle for Different Road Surfaces

  • Kim, Su-Hee;Kim, Tae-Gu
    • International Journal of Safety
    • /
    • 제7권1호
    • /
    • pp.26-29
    • /
    • 2008
  • The purpose of this study is the measurement of whole-body vibration for different road surfaces. Experimental measurements were taken on asphalt, cement, and off-road surfaces as defined by ISO 2631-1. Each experiment was conducted under the same set of conditions (measurement duration, times, speed, vehicle type). Measurement duration was 10 minutes and 3 separate measurements were taken on each road surface. Vehicle speed was 60km/h. In accordance with ISO 2631-1, an acceleration sensor is set up between the driver's seat and the human body. For evaluation, RMS(root-mean-square) values were taken as suggested by ISO 2631-1. The results suggest "health guidance caution zones", and the evaluation was based on obtaining the vector sum with "health guidance caution zones".