• Title/Summary/Keyword: a LQR output feedback

Search Result 20, Processing Time 0.028 seconds

Feedback control strategies for active control of noise inside a 3-D vibro-acoustic cavity

  • Bagha, Ashok K.;Modak, Subodh V.
    • Smart Structures and Systems
    • /
    • v.20 no.3
    • /
    • pp.273-283
    • /
    • 2017
  • This paper presents and compares three feedback control strategies for active control of noise inside a 3-D vibro-acoustic cavity. These are a) control strategy based on direct output feedback (DOFB) b) control strategy based on linear quadratic regulator (LQR) to reduce structural vibrations and c) LQR control strategy with a weighting scheme based on structural-acoustic coupling coefficients. The first two strategies are indirect control strategies in which noise reduction is achieved through active vibration control (AVC), termed as AVC-DOFB and AVC-LQR respectively. The third direct strategy is based on active structural-acoustic control (ASAC). This strategy is an LQR based optimal control strategy in which the coupling between the various structural and the acoustic modes is used to design the controller. The strategy is termed as ASAC-LQR. A numerical model of a 3-D rectangular box cavity with a flexible plate (glued with piezoelectric patches) and with other five surfaces treated rigid is developed using finite element (FE) method. A single pair of collocated piezoelectric patches is used for sensing the vibrations and applying control forces on the structure. A comparison of frequency response function (FRF) of structural nodal acceleration, acoustic nodal pressure, and piezoelectric actuation voltage is carried out. It is found that the AVC-DOFB control strategy gives equal importance to all the modes. The AVC-LQR control strategy tries to consume the control effort to damp all the structural modes. It is seen that the ASAC-LQR control strategy utilizes the control effort more intelligently by adding higher damping to those structural modes that matter more for reducing the interior noise.

Optimal Output Feedback Control Simulation for the Operation of Space Shuttle Main Engine (우주왕복선 액체로켓엔진 작동의 최적출력제어 시뮬레이션)

  • Cha, Jihyoung;Ko, Sangho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.3
    • /
    • pp.37-53
    • /
    • 2016
  • This paper deals with an optimal output control for Space Shuttle Main Engine (SSME), a liquid propellant rocket engine using a staged-combustion cycle. For this purpose, we modeled simplified mathematical model of SSME using each SSME component divided into 7 major categories and found trim points called Rated Propulsion Level (RPL). For design the closed-loop system of SSME, we designed optimal output feedback Linear Quadratic Regulation (LQR) control system using SSME linearized model under RPL 104% and demonstrated the performance of the controller through numerical simulation.

Output feedback, decentralized controller design for an active suspension system using 7 DOF full car model (7 자유도 차량 모델과 출력 되먹임을 이용한 자동차 능동 현가장치 설계에 관한 연구)

  • 노태수;정길도;홍동표
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.871-875
    • /
    • 1996
  • The Output feedback linear quadratic regulator control is applied to the design of active suspension system using 7 DOF full car model. The performance index reflects the vehicle vertical movement, pitch and roll motion, and minimization of suspension stroke displacements in the rattle space. The elements of gain matrix are approximately decoupled so that each suspension requires only local information to generate the control force. The simulation results indicates that the output feedback LQ controller is more effective than purely passive or full state feedback active LQ controllers in following the road profile at the low frequency range and suppressing the road disturbance at the high frequency ranges.

  • PDF

LQ-servo design to command following and output-disturbance rejection (명령추종과 출력측 외란제거를 위한 LQ-servo 설계)

  • Yun, Seong-O;Suh, Byung-Suhl
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.443-449
    • /
    • 1997
  • LQ-servo design procedure introduced by Athans is a method using a partial states feedback and an output feedback in order to improve the poor performance robustness of the LQR as well as to maintain its stability robustness. Although the method guarantees good stability robustness, it is not effective in performance robustness as it does not match the singular value at low or high frequencies of the transfer matrix obtained by breaking at the plant output. This paper intends propose of a new method, using the limited behaviour of the control gain introduced by Kwakernaak and Sivan, in order to improve it does it refer to controlga introduced by kwakernaak or the new metho Anblguouls.

  • PDF

Observer-based Controller Design of a Magnetic Bearing System (외란관측기에 기초한 자기베어링시스템의 제어기 설계)

  • 송상호;박영진;정성종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.470-473
    • /
    • 1995
  • There exist two critical in application of the magnetic bearing system. One is the control axis interference caused by gyroscopic effect and the other is the vibration caused by the unbalance on the rotor. To solve both problems at the same time, first, a centralized full-state feedback controller based on the LQR control theory was designed to compensate for the gyroscopic effect. Second, disturbance rejection control input based on the observer was designed to avoid the vibration causer by the unbalanced rotor. Balancing input computer accroding to LQR and output of the observer were derived in term of rotational speed. Effectiveness of the on-line balancing was verified through numerical simulation. The developed observer-based controller was also applied to the linear and nonlinear magnetic bearing systems.

  • PDF

Comparison Among Yaw and Roll Motion Controllers for Rollover Prevention (차량 전복 방지를 위한 롤 및 요 운동 제어기의 성능 비교)

  • Yim, Seongjin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.701-705
    • /
    • 2014
  • This article presents a comparison among several yaw and roll motion controllers for vehicle rollover prevention. In the previous research, yaw and roll motion controllers can be independently designed for rollover prevention. Following this idea, several yaw and roll motion controllers are designed and compared in terms of rollover prevention. For the yaw motion control, PID, LQR, SMC (Sliding Mode Control) and TDC (Time-Delay Control) are adopted. For the roll motion control, LQR, LQ SOF (Static Output Feedback) control, PID, and SMC are adopted. To compare the performance of each controller, simulation is performed on a vehicle simulation package, CarSim$^{(R)}$. From simulation, TDC and LQ SOF are the best for yaw and roll motion control, respectively.

Experimental verification of leverage-type stiffness-controllable tuned mass damper using direct output feedback LQR control with time-delay compensation

  • Chu, Shih-Yu;Yeh, Shih-Wei;Lu, Lyan-Ywan;Peng, Chih-Hua
    • Earthquakes and Structures
    • /
    • v.12 no.4
    • /
    • pp.425-436
    • /
    • 2017
  • Vibration control using a tuned mass damper (TMD) is an effective technique that has been verified using analytical methods and experiments. It has been applied in mechanical, automotive, and structural applications. However, the damping of a TMD cannot be adjusted in real time. An excessive mass damper stroke may be introduced when the mass damper is subjected to a seismic excitation whose frequency content is within its operation range. The semi-active tuned mass damper (SATMD) has been proposed to solve this problem. The parameters of an SATMD can be adjusted in real time based on the measured structural responses and an appropriate control law. In this study, a stiffness-controllable TMD, called a leverage-type stiffness-controllable mass damper (LSCMD), is proposed and fabricated to verify its feasibility. The LSCMD contains a simple leverage mechanism and its stiffness can be altered by adjusting the pivot position. To determine the pivot position of the LSCMD in real time, a discrete-time direct output-feedback active control law that considers delay time is implemented. Moreover, an identification test for the transfer function of the pivot driving and control systems is proposed. The identification results demonstrate the target displacement can be achieved by the pivot displacement in 0-2 Hz range and the control delay time is about 0.1 s. A shaking-table test has been conducted to verify the theory and feasibility of the LSCMD. The comparisons of experimental and theoretical results of the LSCMD system show good consistency. It is shown that dynamic behavior of the LSCMD can be simulated correctly by the theoretical model and that the stiffness can be properly adjusted by the pivot position. Comparisons of experimental results of the LSCMD and passive TMD show the LSCMD with less demand on the mass damper stroke than that for the passive TMD.

Active vibration robust control for FGM beams with piezoelectric layers

  • Xu, Yalan;Li, Zhousu;Guo, Kongming
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.33-43
    • /
    • 2018
  • The dynamic output-feedback robust control method based on linear matrix inequality (LMI) method is presented for suppressing vibration response of a functionally graded material (FGM) beam with piezoelectric actuator/sensor layers in this paper. Based on the reduced model obtained by using direct mode truncation, the linear fractional state space representation of a piezoelectric FGM beam with material properties varying through the thickness is developed by considering both the inherent uncertainties in constitution material properties as well as material distribution and the model error due to mode truncation. The dynamic output-feedback robust H-infinity control law is implemented to suppress the vibration response of the piezoelectric FGM beam and the LMI method is utilized to convert control problem into convex optimization problem for efficient computation. In numerical studies, the flexural vibration control of a cantilever piezoelectric FGM beam is considered to investigate the accuracy and efficiency of the proposed control method. Compared with the efficient linear quadratic regulator (LQR) widely employed in literatures, the proposed robust control method requires less control voltage applied to the piezoelectric actuator in the case of same control performance for the controlled closed-loop system.

Modeling and Multivariable Control of a Novel Multi-Dimensional Levitated Stage with High Precision

  • Hu Tiejun;Kim Won-jong
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • This paper presents the modeling and multivariable feedback control of a novel high-precision multi-dimensional positioning stage. This integrated 6-degree-of-freedom. (DOF) motion stage is levitated by three aerostatic bearings and actuated by 3 three-phase synchronous permanent-magnet planar motors (SPMPMs). It can generate all 6-DOF motions with only a single moving part. With the DQ decomposition theory, this positioning stage is modeled as a multi-input multi-output (MIMO) electromechanical system with six inputs (currents) and six outputs (displacements). To achieve high-precision positioning capability, discrete-time integrator-augmented linear-quadratic-regulator (LQR) and reduced-order linearquadratic-Gaussian (LQG) control methodologies are applied. Digital multivariable controllers are designed and implemented on the positioning system, and experimental results are also presented in this paper to demonstrate the stage's dynamic performance.

LQ-servo method for non-minimum phase plants (비최소 위상 플랜트에서 LQ-servo 방법)

  • 서병설;장태우
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.3
    • /
    • pp.9-16
    • /
    • 1996
  • LQ-servo is a robustness guaranteed multivariable controller design method based on the LQR structure to improve command following with output feedback. in this paper we introduce a weighting factor on the low frequency part of the state weighting matrix in the performance index in order to increase the low frequency gain of loop transfer function matrix T(s) in the loop shaping design method.

  • PDF