• Title/Summary/Keyword: a 3D detector

Search Result 412, Processing Time 0.032 seconds

Design and Implementation of Multifunction 2-Channel Receiver for 3 Dimensional Phased Array Radar (3차원 위상배열 레이다용 다기능 2채널 수신기 설계 및 제작)

  • 강승민;양진모;송재원
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.9
    • /
    • pp.1-12
    • /
    • 1998
  • We have implemented receiver for a 3 Dimensional Phased-Array Radar detecting the azimuth angle, the altitude, the range of a target on real time. This system consists of high frequency module, which protects receiver and controls sensitivity, intermediate frequency module, monopulse detector, IQ phase detector, AGC controller. A two-channel receiver with same function is implemented for increasing accuracy of target altitude data by amplitude comparison monopulse method. The TSS sensitivity of the receiver is -98dBm. The bandwidth of the receiver is 500 MHz. We can control the system gain manually by 100 dB when be AGC off. The gain and phase unbalance of two channels is 5 dB and 30 degree, respectively. The image rejection rate of the IQ detector is 30 dB. We used duroid substrate and package- type device.

  • PDF

A Study on the Fabrication and Detection of Cd$_{80}$ Zn$_{20}$Te Gamma-ray detector with MIM Structure (Cd$_{80}$ Zn$_{20}$Te를 사용한 MIM 구조의 감마선 탐지 소자 제작 및 탐지 특성에 관한 연구)

  • 최명진;왕진석
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.4
    • /
    • pp.47-53
    • /
    • 1997
  • We fabricated gamma radiation detector using high resistive p-Cd$_{80}$Zn$_{20}$Te grown by high pressure bridgman method and forming au thin film electrode by chemically electroless deposition method. The device of Au/Cd$_{80}$Zn$_{20}$Te/Au is a typical MIM structure. The characteristic of current-voltage showed good linearity to 3kV/cm but it depend on the square of electric field over 3kV/cm. As the results of rutherford backscattering spectroscope(RBS) and auger spectroscope on the Au/Cd$_{80}$Zn$_{20}$Te, Au penetrated to the surface of Cd$_{80}$Zn$_{20}$Te detector absorbed slightly high energy radiation like a few hundred keV and showed good performance to detect low energy gamma ray.mma ray.

  • PDF

Design of a 6bit 250MS/s CMOS A/D Converter using Input Voltage Range Detector (입력전압범위 감지회로를 이용한 6비트 250MS/s CMOS A/D 변환기 설계)

  • Kim, Won;Seon, Jong-Kug;Jung, Hak-Jin;Piao, Li-Min;Yoon, Kwang-Sub
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.5
    • /
    • pp.16-23
    • /
    • 2010
  • This paper presents 6bit 250MS/s flash A/D converter which can be applied to wireless communication system. To solve the problem of large power consumption in flash A/D converter, control algorithm by input signal level is used in comparator stage. Also, input voltage range detector circuit is used in reference resistor array to minimize the dynamic power consumption in the comparator. Compared with the conventional A/D converter, the proposed A/D converter shows 4.3% increase of power consumption in analog and a seventh power consumption in digital, which leads to a half of power consumption in total. The A/D converter is implemented in a $0.18{\mu}m$ CMOS 1-poly 6-metal technology. The measured results show 106mW power dissipation with 1.8V supply voltage. It shows 4.1bit ENOB at sampling frequency 250MHz and 30.27MHz input frequency.

Application of the Fault current detector to High speed circuit breaker (고속도 차단기에 대한 사고전류 감지기의 적용연구)

  • 이우영;송기동;박경엽
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.222-225
    • /
    • 2003
  • In this paper the performance of the high speed circuit breaker with fault current detector is described. The operating mechanism of circuit breaker in use is a magnetic actuator and a fault current detector is based on the DSP and A/D converter. The results show that 3-cycle is enough to interrupt the fault current and the more speed up performance is expected with on-going project.

  • PDF

On-line Generation of Three-Dimensional Core Power Distribution Using Incore Detector Signals to Monitor Safety Limits

  • Jang, Jin-Wook;Lee, Ki-Bog;Na, Man-Gyun;Lee, Yoon-Joon
    • Nuclear Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.528-539
    • /
    • 2004
  • It is essential in commercial reactors that the safety limits imposed on the fuel pellets and fuel clad barriers, such as the linear power density (LPD) and the departure from nucleate boiling ratio (DNBR), are not violated during reactor operations. In order to accurately monitor the safety limits of current reactor states, a detailed three-dimensional (3D) core power distribution should be estimated from the in-core detector signals. In this paper, we propose a calculation methodology for detailed 3D core power distribution, using in-core detector signals and core monitoring constants such as the 3D Coupling Coefficients (3DCC), node power fraction, and pin-to-node factors. Also, the calculation method for several core safety parameters is introduced. The core monitoring constants for the real core state are promptly provided by the core design code and on-line MASTER (Multi-purpose Analyzer for Static and Transient Effects of Reactors), coupled with the core monitoring program. through the plant computer, core state variables, which include reactor thermal power, control rod bank position, boron concentration, inlet moderator temperature, and flow rate, are supplied as input data for MASTER. MASTER performs the core calculation based on the neutron balance equation and generates several core monitoring constants corresponding to the real core state in addition to the expected core power distribution. The accuracy of the developed method is verified through a comparison with the current CECOR method. Because in all the verification calculation cases the proposed method shows a more conservative value than the best estimated value and a less conservative one than the current CECOR and COLSS methods, it is also confirmed that this method secures a greater operating margin through the simulation of the YGN-3 Cycle-1 core from the viewpoint of the power peaking factor for the LPD and the pseudo hot pin axial power distribution for the DNBR calculation.

Fabrication of 3D Feed Horn IR Antenna for IR Detector

  • Kim, Kun-Tae;Han, Yong-Hee;Shin, Hyun-Joon;Sung Moon;Park, Jung-Ho
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.4
    • /
    • pp.170-175
    • /
    • 2004
  • A three dimensional feed horn 10${\mu}{\textrm}{m}$ wavelength infrared antenna has been suggested, fabricated and characterized. It was applied to an infrared detector for efficient collecting of IR radiation and for reducing background noise. The horn antenna size was designed for maximum antenna directivity. The 3D feed horn antenna mold was fabricated using rotating and tilted illumination while the antenna plate was constructed by way of electroplating. Antenna characteristics were measured by coupling with a microbolometer. Measurement results indicated that the directivity of the antenna is 16.1㏈ and the background noise is reduced by approximately two times.

A complete 3D map of Bell Glasstone spatial correction factors for BRAHMMA subcritical core

  • Shukla, Shefali;Roy, Tushar;Kashyap, Yogesh;Shukla, Mayank;Singh, Prashant
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3488-3493
    • /
    • 2022
  • Accelerator driven subcritical systems have long been discussed as facilities which can be used for solving the nuclear waste problem. The physics of these systems is very different from conventional reactors and new techniques had to be developed for reactivity monitoring. One such technique is the Area Ratio Method which studies the response of a subcritical system upon insertion of a large number of neutron pulses. An issue associated with this technique is the spatial dependence of measured reactivity which is intrinsic to the sub criticality of the system since the reactor does not operate on the fundamental mode and measured reactivity depends on the detector position. This is generally addressed by defining Bell-Glasstone spatial correction factor. This factor upon multiplication with measured reactivity gives the correct reactivity which is independent of detector location. Monte Carlo Methods are used for evaluating these factors. This paper presents a complete three dimensional map of spatial correction factors for BRAHMMA subcritical system. In addition, the dataset obtained also helps in identifying detector locations where the correction factor is close to unity, thereby implying no correction if the detector is used at those locations.

A Study on Various Automatic Exposure Control System in Multi-Detector Computed Tomography by Using Human Phantom (인체 모형을 이용한 다중 검출기 컴퓨터단층촬영기기의 다양한 자동노출제어 시스템에 대한 연구)

  • Kim, Yong-Ok;Seoung, Youl-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1714-1720
    • /
    • 2012
  • The purpose of the study was to evaluation of the radiation dose reduction and the possibility of the maintainability of the adequate image quality using various automatic exposure control (AEC) systems in multi-detector computed tomography (MDCT). We used three AEC systems for the study: General Electric Healthcare (Auto-mA 3D), Philips Medical systems (DoseRight) and Siemens Medical Solutions (Care Dose 4D). The general scanning protocol was created for the each examination with the same scanning parameters as many as possible. In the various AEC systems, the evaluation of reduced-dose was evaluated by comparing to fixed mAs with using human phantom. The image quality of the phantom was evaluated with measuring the image noise (standard deviation) by insert regions of interests. Finally, when we applied to AEC for three manufacturers, the radiation dose reduction decreased each 35.3% in the Auto-mA 3D, 58.2% in the DoseRight, and 48.6% in the Care Dose 4D. And, there was not statistical significant difference among the image quality in the Strong/Weak of the Care Dose 4D(P=.269). This applies to variety of the AEC systems which will be very useful to reduce the dose and to maintain the high quality.

Development of the Unmanned Automatic Test System for a Portable Detector using TRIZ TESE

  • Chang, YuShin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.6
    • /
    • pp.63-71
    • /
    • 2021
  • This paper propose an development of the unmanned automatic test system for a portable detector using TRIZ Methodology. A new development scheme among of the unmanned automatic test system configurations was obtained after application of the TESE(Trends of Engineering System Evolution) one of the TRIZ methods. Using Pugh matrix drives some improving ideas. The key idea of this unmanned automatic test system scheme is to minimize whole test procedure time of each portable detector and to maximize the amount of portable detectors at once. Between the before and the after configurations of the 3D mechanical model find out improvements. This paper shows that the proposed development scheme improves the test performance efficiency compared to previous scheme.

A cosmic ray muons tomography system with triangular bar plastic scintillator detectors and improved 3D image reconstruction algorithm: A simulation study

  • Yanwei Zhao;Xujia Luo;Kemian Qin;Guorui Liu;Daiyuan Chen;R.S. Augusto;Weixiong Zhang;Xiaogang Luo;Chunxian Liu;Juntao Liu;Zhiyi Liu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.681-689
    • /
    • 2023
  • Purpose: Muons are characterized by a strong penetrating ability and can travel through thousands of meters of rock, making them ideal to image large volumes and substances typically impenetrable to, for example, electrons and photons. The feasibility of 3D image reconstruction and material identification based on a cosmic ray muons tomography (MT) system with triangular bar plastic scintillator detectors has been verified in this paper. Our prototype shows potential application value and the authors wish to apply this prototype system to 3D imaging. In addition, an MT experiment with the same detector system is also in progress. Methods: A simulation based on GEANT4 was developed to study cosmic ray muons' physical processes and motion trails. The yield and transportation of optical photons scintillated in each triangular bar of the detector system were reproduced. An image reconstruction algorithm and correction method based on muon scattering, which differs from the conventional PoCA algorithm, has been developed based on simulation data and verified by experimental data. Results: According to the simulation result, the detector system's position resolution is below 1 ~ mm in simulation and 2 mm in the experiment. A relatively legible 3D image of lead bricks in size of 20 cm × 5 cm × 10 cm used our inversion algorithm can be presented below 1× 104 effective events, which takes 16 h of acquisition time experimentally. Conclusion: The proposed method is a potential candidate to monitor the cosmic ray MT accurately. Monte Carlo simulations have been performed to discuss the application of the detector and the simulation results have indicated that the detector can be used in cosmic ray MT. The cosmic ray MT experiment is currently underway. Furthermore, the proposal also has the potential to scan the earth, buildings, and other structures of interest including for instance computerized imaging in an archaeological framework.