• 제목/요약/키워드: Zoonotic viruses

검색결과 15건 처리시간 0.022초

표적화 차세대염기서열분석법을 이용한 인수공통 바이러스의 유전체 역학과 예찰 (Genomic epidemiology and surveillance of zoonotic viruses using targeted next-generation sequencing)

  • 이성현;백승환;라조리아 시바니;푸스파레니 사라;김원근
    • 한국동물위생학회지
    • /
    • 제46권1호
    • /
    • pp.93-106
    • /
    • 2023
  • Emerging and re-emerging zoonotic viruses become critical public health, economic, societal, and cultural burdens. The Coronavirus disease-19 (COVID-19) pandemic reveals needs for effective preparedness and responsiveness against the emergence of variants and the next virus outbreak. The targeted next-generation sequencing (NGS) significantly contributes to the acquisition of viral genome sequences directly from clinical specimens. Using this advanced NGS technology, the genomic epidemiology and surveillance play a critical role in identifying of infectious source and origin, tracking of transmission chains and virus evolution, and characterizing the virulence and developing of vaccines during the outbreak. In this review, we highlight the platforms and preparation of targeted NGS for the viral genomics. We also demonstrate the application of this strategy to take advantage of the responsiveness and prevention of emerging zoonotic viruses. This article provides broad and deep insights into the preparedness and responsiveness for the next zoonotic virus outbreak.

Genetic diversity of the H5N1 viruses in live bird markets, Indonesia

  • Dharmayanti, Ni Luh Putu Indi;Hewajuli, Dyah Ayu;Ratnawati, Atik;Hartawan, Risza
    • Journal of Veterinary Science
    • /
    • 제21권4호
    • /
    • pp.56.1-56.13
    • /
    • 2020
  • Background: The live bird market (LBM) plays an important role in the dynamic evolution of the avian influenza H5N1 virus. Objectives: The main objective of this study was to monitor the genetic diversity of the H5N1 viruses in LBMs in Indonesia. Methods: Therefore, the disease surveillance was conducted in the area of Banten, West Java, Central Java, East Java, and Jakarta Province, Indonesia from 2014 to 2019. Subsequently, the genetic characterization of the H5N1 viruses was performed by sequencing all 8 segments of the viral genome. Results: As a result, the H5N1 viruses were detected in most of LBMs in both bird' cloacal and environmental samples, in which about 35% of all samples were positive for influenza A and, subsequently, about 52% of these samples were positive for H5 subtyping. Based on the genetic analyses of 14 viruses isolated from LBMs, genetic diversities of the H5N1 viruses were identified including clades 2.1.3 and 2.3.2 as typical predominant groups as well as reassortant viruses between these 2 clades. Conclusions: As a consequence, zoonotic transmission to humans in the market could be occurred from the exposure of infected birds and/or contaminated environments. Moreover, new virus variants could emerge from the LBM environment. Therefore, improving pandemic preparedness raised great concerns related to the zoonotic aspect of new influenza variants because of its high adaptivity and efficiency for human infection.

Genetic characterization of H9N2 avian influenza virus previously unrecognized in Korea

  • Heo, Gyeong-Beom;Kye, Soo-Jeong;Sagong, Mingeun;Lee, Eun-Kyoung;Lee, Kwang-Nyeong;Lee, Yu-Na;Choi, Kang-Seuk;Lee, Myoung-Heon;Lee, Youn-Jeong
    • Journal of Veterinary Science
    • /
    • 제22권2호
    • /
    • pp.21.1-21.6
    • /
    • 2021
  • In this study, we describe the isolation and characterization of previously unreported Y280-lineage H9N2 viruses from two live bird markets in Korea in June 2020. Genetic analysis revealed that they were distinct from previous H9N2 viruses circulating in Korea and had highest homology to A/chicken/Shandong/1844/2019(H9N2) viruses. Their genetic constellation showed they belonged to genotype S, which is the predominant genotype in China since 2010, where genotype S viruses have infected humans and acted as internal gene donors to H5 and H7 zoonotic influenza viruses. Active surveillance and control measures need to be enhanced to protect the poultry industry and public health.

2019년 국내에서 분리한 H1N2 돼지 인플루엔자바이러스 유전자 분석 및 이의 마우스에 대한 감염성 (Genetic Analysis of the 2019 Swine H1N2 Influenza Virus Isolated in Korean Pigs and Its Infectivity in Mice)

  • 장윤영;서상희
    • 생명과학회지
    • /
    • 제30권9호
    • /
    • pp.749-762
    • /
    • 2020
  • 돼지인플루엔자는 동물에서 사람에게 감염할 수 있는 인수공통전염병이다. 우리는 2019년 한국 돼지농장에서 호흡기 증상을 보이는 돼지에서 3주의 H1N2형 인플루엔자바이러스를 분리하였다. 유전자 분석결과, 이들 바이러스의 8개 유전자 중 PA 및 NP 유전자는 2009 대유행 H1N1 인플루엔자 유래였고, 나머지 유전자는 돼지에 유행하는 H3N2 및 H1N2 인플루엔자 유래 유전자를 가진 재조합 바이러스 이었다. 분리된 H1N2 바이러스를 마우스에 접종한 결과, 마우스는 17% 정도 체중이 감소하였고, 염증 세포들이 침윤한 간질성 폐렴 증상을 보였다.

Isolation and identification of mosquito-borne zoonotic diseases in slaughterhouse in Daejeon

  • Youngju Kim;Gyurae Kim;Sunkyong Song;Youngshik Jung;Seojin Park;Sang-Joon Lee;Ho-Seong Cho;Yeonsu Oh
    • 한국동물위생학회지
    • /
    • 제46권2호
    • /
    • pp.115-122
    • /
    • 2023
  • This study was performed to investigate the distribution of mosquito vectors related to the zoonotic disease in Daejeon. Samples were taken using a blacklight trap once a month from March to November 2021 at the slaughterhouse in Daejeon. A total of 820 mosquitoes were captured and classified into 5 genera and 8 species. Among the collected mosquitoes, 319 (38.9%) and 295 (35.93%) were Aedes vexans nipponii and Culex pipiens pallens, respectively, making them the dominant species. The overall number of mosquitoes collected started to increase from May and reached the largest value of 329 (40.12%) in June. Trapped mosquitoes are created 72 pools by environmental condition and by species. The pools were tested by PCR methods for 7 zoonotic pathogens. Flavivirus-positive products were confirmed by DNA sequencing. Japanese encephalitis viruses were detected in 3 pools collected from cow lairage (Culex pipiens pallens) in May, cow by-product processing room (Aedes vexans nipponii) in June and cow lairage (Mansonia uniformis) in June. Culex flavivirus were detected in 4 pools. Based on the results of this study, it is considered that continous surveillence of mosquitoes in livestock assembly facilities (slaughterhouse) should be performed for controlling mosquito populations and mediating disease spread by mosquitoes.

Detection and genetic analysis of zoonotic hepatitis E virus, rotavirus, and sapovirus in pigs

  • Lyoo, Eu Lim;Park, Byung-Joo;Ahn, Hee-Seop;Han, Sang-Hoon;Go, Hyeon-Jeong;Kim, Dong-Hwi;Lee, Joong-Bok;Park, Seung-Yong;Song, Chang-Seon;Lee, Sang-Won;Choi, In-Soo
    • 대한수의학회지
    • /
    • 제60권2호
    • /
    • pp.61-68
    • /
    • 2020
  • The zoonotic transmission of viral diseases to humans is a serious public health concern. Pigs are frequently a major reservoir for several zoonotic viral diseases. Therefore, periodic surveillance is needed to determine the infection rates of zoonotic diseases in domestic pigs. Hepatitis E virus (HEV), rotavirus, sapovirus (SaV), and norovirus (NoV) are potential zoonotic viruses. In this study, 296 fecal samples were collected from weaned piglets and growing pigs in 13 swine farms, and the viral RNA was extracted. Partial viral genomes were amplified by reverse transcription-polymerase chain reaction (PCR) or nested-PCR using virus-specific primer sets under different PCR conditions. HEV-3, rotavirus A, and SaV genogoup 3 were detected from 11.5, 2.7, and 3.0% of the samples, respectively. On the other hand, NoV was not detected in any of the samples. Genetic analysis indicated that the nucleotide sequences of swine HEV-3 and rotavirus A detected in this study were closely related to those of human isolates. However, swine SaV was distant from the human strains. These results suggest that HEV-3 and rotavirus A can be transmitted from pigs to humans. Therefore, strict preventive measures should be implemented by workers in the swine industry to prevent infections with HEV-3 and rotavirus A excreted from pigs.

식물 유래 천연물의 인플루엔자에 대한 항바이러스 활성 (Antiviral Activity of Plant-derived Natural Products against Influenza Viruses)

  • 김선정;김예원;김주원;황유빈;김성현;장요한
    • 생명과학회지
    • /
    • 제32권5호
    • /
    • pp.375-390
    • /
    • 2022
  • 인수공통 호흡기바이러스인 인플루엔자바이러스 감염으로 인해 공중보건과 가축산업에 심각한 피해가 지속적으로 발생하고 있다. 인플루엔자 백신 접종을 통해 항원형이 일치하는 바이러스 감염에 대해 우수한 방어면역을 제공하고 있으나, 효과적인 바이러스 감염 제어에는 여전히 큰 공백이 존재하고 있다. 다양한 항원형을 갖는 바이러스에 동시방어가 가능한 범용인플루엔자백신 개발과 함께 바이러스 치료효과를 제공하는 항바이러스제의 개발도 중요한 접근법으로 고려되고 있다. 현재 널리 사용되고 있는 인플루엔자 항바이러스제의 불완전한 치료효과와 내성바이러스의 출현 등의 문제들로 인해 식물 유래 천연물의 항바이러스 활성에 대한 관심이 증가하고 있다. 특히, 현재 진행 중인 코로나-19 팬데믹은 범용적인 항바이러스 활성을 갖는 안전하고 효과적인 항바이러스제 개발의 필요성을 뚜렷이 보여준다. 본 리뷰는 현재까지 보고된 천연물의 항인플루엔자바이러스 활성을 요약하였다. 또한, 항바이러스 활성을 갖는 천연물의 바이러스 사멸활성과 면역증강활성을 이용하는 신규 백신개발과 면역증강제 개발 가능성에 대해서도 분석하였다.

Monitoring Culicine Mosquitoes (Diptera: Culicidae) as a Vector of Flavivirus in Incheon Metropolitan City and Hwaseong-Si, Gyeonggi-Do, Korea, during 2019

  • Bahk, Young Yil;Park, Seo Hye;Kim-Jeon, Myung-Deok;Oh, Sung-Suck;Jung, Haneul;Jun, Hojong;Kim, Kyung-Ae;Park, Jong Myong;Ahn, Seong Kyu;Lee, Jinyoung;Choi, Eun-Jeong;Moon, Bag-Sou;Gong, Young Woo;Kwon, Mun Ju;Kim, Tong-Soo
    • Parasites, Hosts and Diseases
    • /
    • 제58권5호
    • /
    • pp.551-558
    • /
    • 2020
  • The flaviviruses are small single-stranded RNA viruses that are typically transmitted by mosquitoes or tick vectors and are etiological agents of acute zoonotic infections. The viruses are found around the world and account for significant cases of human diseases. We investigated population of culicine mosquitoes in central region of Korean Peninsula, Incheon Metropolitan City and Hwaseong-si. Aedes vexans nipponii was the most frequently collected mosquitoes (56.5%), followed by Ochlerotatus dorsalis (23.6%), Anopheles spp. (10.9%), and Culex pipiens complex (5.9%). In rural regions of Hwaseong, Aedes vexans nipponii was the highest population (62.9%), followed by Ochlerotatus dorsalis (23.9%) and Anopheles spp. (12.0%). In another rural region of Incheon (habitat of migratory birds), Culex pipiens complex was the highest population (31.4%), followed by Ochlerotatus dorsalis (30.5%), and Aedes vexans vexans (27.5%). Culex pipiens complex was the predominant species in the urban region (84.7%). Culicine mosquitoes were identified at the species level, pooled up to 30 mosquitoes each, and tested for flaviviral RNA using the SYBR Green-based RT-PCR and confirmed by cDNA sequencing. Three of the assayed 2,683 pools (989 pools without Anopheles spp.) were positive for Culex flaviviruses, an insect-specific virus, from Culex pipiens pallens collected at the habitats for migratory birds in Incheon. The maximum likelihood estimation (the estimated number) for Culex pipiens pallens positive for Culex flavivirus was 25. Although viruses responsible for mosquito-borne diseases were not identified, we encourage intensified monitoring and long-term surveillance of both vector and viruses in the interest of global public health.

Structure and Function of the Influenza A Virus Non-Structural Protein 1

  • Han, Chang Woo;Jeong, Mi Suk;Jang, Se Bok
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권8호
    • /
    • pp.1184-1192
    • /
    • 2019
  • The influenza A virus is a highly infectious respiratory pathogen that sickens many people with respiratory disease annually. To prevent outbreaks of this viral infection, an understanding of the characteristics of virus-host interaction and development of an anti-viral agent is urgently needed. The influenza A virus can infect mammalian species including humans, pigs, horses and seals. Furthermore, this virus can switch hosts and form a novel lineage. This so-called zoonotic infection provides an opportunity for virus adaptation to the new host and leads to pandemics. Most influenza A viruses express proteins that antagonize the antiviral defense of the host cell. The non-structural protein 1 (NS1) of the influenza A virus is the most important viral regulatory factor controlling cellular processes to modulate host cell gene expression and double-stranded RNA (dsRNA)-mediated antiviral response. This review focuses on the influenza A virus NS1 protein and outlines current issues including the life cycle of the influenza A virus, structural characterization of the influenza A virus NS1, interaction between NS1 and host immune response factor, and design of inhibitors resistant to the influenza A virus.

Complete mitochondrial genome of Nyctalus aviator and phylogenetic analysis of the family Vespertilionidae

  • Lee, Seon-Mi;Lee, Mu-Yeong;Kim, Sun-sook;Kim, Hee-Jong;Jeon, Hye Sook;An, Junghwa
    • Journal of Species Research
    • /
    • 제8권3호
    • /
    • pp.313-317
    • /
    • 2019
  • Bats influence overall ecosystem health by regulating species diversity and being a major source of zoonotic viruses. Hence, there is a need to elucidate their migration, population structure, and phylogenetic relationship. The complete mitochondrial genome is widely used for studying the genome-level characteristics and phylogenetic relationship of various animals due to its high mutation rate, simple structure, and maternal inheritance. In this study, we determined the complete mitogenome sequence of the bird-like noctule (Nyctalus aviator) by Illumina next-generation sequencing. The sequences obtained were used to reconstruct a phylogenic tree of Vespertilionidae to elucidate the phylogenetic relationship among its members. The mitogenome of N. aviator is 16,863-bp long with a typical vertebrate gene arrangement, consisting of 13 protein-coding genes (PCGs), 22 transfer RNA genes, 2 ribosomal RNA genes, and 1 putative control region. Overall, the nucleotide composition is as follows: 32.3% A, 24.2% C, 14.3% G, and 29.2% T, with a slight AT bias (61.5%). The base composition of the 13 PCGs is as follows: 30.3% A, 13.4% G, 31.0% T, and 25.2% C. The phylogenetic analysis, based on 13 concatenated PCG sequences, infers that N. aviator is closely related to N. noctula with a high bootstrap value (100%).