• Title/Summary/Keyword: ZnS thin film

Search Result 417, Processing Time 0.025 seconds

The Properties Characterization of ZnO Thin Film Grown by RF Sputtering (RF스퍼터링법으로 제작한 ZnO박막의 특성평가)

  • Jung, S.M.;Chong, K.C.;Choi, Y.S.;Kim, D.Y.;Kim, C.S.;Yi, Jun-Sin
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1433-1435
    • /
    • 1997
  • ZnO shows the properties of wide conductivity variation, high optical transmittance, and excellent piezoelectricity. Using these properties of ZnO, the material applications were extended to sensors, SAW filters, solar cells, and display devices. This paper investigated transmittance influencing factors for thin film ZnO grown by RF magnetron sputtering. The growth rate and structural investigation were carried out in conjunction with optical transmittance characteristics of thin film ZnO. The glass substrate temperature of $175^{\circ}C$ exhibited a preferential crystallization along (002) orientation. Transmittance of ZnO film deposited at the substrate temperature of $175^{\circ}C$ showed higher than 92%. An active sputter gas was investigated with a variation of $O_2$ partial pressure from 0 to 10% in an Ar atmosphere. ZnO film grown in 100% Ar gas shows that a reduced transmittance of 82% at the short wavelengths and decreased resistivity value. As the partial pressure of $O_2$ gas increased, the optical transmittance was increased above 90% at the short wavelengths, however, resistivity was drastically increased to higher than $10^4{\Omega}$-cm.

  • PDF

A Study on Electrical Resistivity Variation 7f Zinc Oxide Thin Film (산화아연 박막의 전기저항률 변화에 관한 연구)

  • 정운조;박계춘;조재철;김주승;구할본;유용택
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.188-193
    • /
    • 1997
  • ZnO thin film had been deposited on the glass 7r sputtering method, and investigated by electrical and structural properties. When the rf power was 188W and sputtering pressure was 1$\times$10$^{-3}$ Torr at room temperature, Al-doped ZnO thin film had the lowest resistivity(1$\times$10$^{-4}$ $\Omega$.cm), and then carrier concentration and Hall mobility were 6.27$\times$10$^{20}$ cm$^{-3}$ and 22.04$\textrm{cm}^2$/V.s, respectively. And undoped ZnO thin film had about 10$^{14}$ $\Omega$.cm resistivity when oxygen content was 10% or more at room temperature. The surface morphology of ZnO thin film observed by SEM was overall uniform when oxygen content was 50% below and sputtering pressure was 1.0$\times$10$^{-1}$ Torr.

  • PDF

Structural, Electrical and Optical Properties of ZnO Thin Films Grown at Various Plume-Substrate Angles by Pulsed Laser Deposition

  • Kim Jae-Won;Kang Hong-Seong;Lee Sang-Yeol
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.3
    • /
    • pp.97-101
    • /
    • 2005
  • ZnO thin films were grown at different plume-substrate (P-S) angles of 90$^{\circ}$ (on-axis PLD), 45$^{\circ}$ and 0$^{\circ}$ (off-axis PLD) using pulsed laser deposition. The x-ray diffraction pattern exhibiting a dominant (002) and a minor (101) peak of ZnO indicates all films were strongly c-axis oriented. By observing of (002) peak, the FWHMs of ZnO (002) peaks decreased and c-axis lattice constant approached the value of bulk ZnO as P-S angle decreased. Whereas the carrier concentration of ZnO thin film deposited at P-S angle of 90$^{\circ}$ was ~ 10$^{19}$ /cm$^{3}$, the Hall measurement of ZnO thin films deposited at P-S angles of 0$^{\circ}$ and 45$^{\circ}$ was impossible due to the decrease of the carrier concentration by the improvement of stoichiometry and crystalline quality. By decreasing P-S angle, the grain size of the films and the UV intensity investigated by photoluminescence (PL) increased and UV peak position showed red shift. The improvement of properties in ZnO thin films deposited by off-axis technique was due to the decrease of repulsive force between a substrate and the particle in plume and the relaxation of supersaturation.

A Study on the Photo-Conductive Characteristics of (p)ZnTe/(n)Si Solar Cell and (n)CdS-(p)ZnTe/(n)Si Poly-Junction Thin Film ((p)ZnTe/(n)Si 태양전지와 (n)CdS-(p)ZnTe/(n)Si 복접합 박막의 광도전 특성에 관한 연구)

  • Jhoun, Choon-Saing;Kim, Wan-Tae;Huh, Chang-Su
    • Solar Energy
    • /
    • v.11 no.3
    • /
    • pp.74-83
    • /
    • 1991
  • In this study, the (p)ZnTe/(n)Si solar cell and (n)CdS-(p)ZnTe/(n)Si poly-junction thin film are fabricated by vaccum deposition method at the substrate temperature of $200{\pm}1^{\circ}C$ and then their electrical properties are investigated and compared each other. The test results from the (p)ZnTe/(n)Si solar cell the (n)CdS-(p)ZnTe/(n)Si poly-junction thin fiim under the irradiation of solar energy $100[mW/cm^2]$ are as follows; Short circuit current$[mA/cm^2]$ (p)ZnTe/(n)Si:28 (n)CdS-(p)ZnTe/(n)Si:6.5 Open circuit voltage[mV] (p)ZnTe/(n)Si:450 (n)CdS-(p)ZnTe/(n)Si:250 Fill factor (p)ZnTe/(n)Si:0.65 (n)CdS-(p)ZnTe/(n)Si:0.27 Efficiency[%] (p)ZnTe/(n)Si:8.19 (n)CdS-(p)ZnTe/(n)Si:2.3 The thin film characteristics can be improved by annealing. But the (p)ZnTe/(n)Si solar cell are deteriorated at temperatures above $470^{\circ}C$ for annealing time longer than 15[min] and the (n)CdS-(p)ZnTe/(n)Si thin film are deteriorated at temperature about $580^{\circ}C$ for longer than 15[min]. It is found that the sheet resistance decreases with the increase of annealing temperature.

  • PDF

A Study on Electrical Resistivity Variation of Zinc Oxide Thin Film (산화아연 박막의 전기저항률 변화에 관한 연구)

  • 정운조;박계춘
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.8
    • /
    • pp.601-606
    • /
    • 1998
  • ZnO thin film had been deposited on the glass by sputtering method, and the electrical and structural properties were investigated. When the rf power was 180W and sputtering was 10 m Torr at room temperature, Al-doped ZnO thin film had the lowest resistivity(1$\times10^{-4}\Omega\cdot{cm}$) and then carrier concentration and Hall mobility were $6.27\times10^{20} cm^{-3} and 22.04 cm^2/V\cdot$s, respectively. The undoped ZnO thin film had about 10$\times10^{14}\Omega\cdot cm$ resistivity when oxygen content was 10% or more at room temperature. When the oxygen content was 50% and below and sputtering pressure was 1.0$\times$1.0 \ulcorner Torr, the surface morphology of thin film observed by SEM was overall uniform.

  • PDF

The characteristic of Cu2ZnSnS4 thin film solar cells prepared by sputtering CuSn and CuZn alloy targets

  • Lu, Yilei;Wang, Shurong;Ma, Xun;Xu, Xin;Yang, Shuai;Li, Yaobin;Tang, Zhen
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1571-1576
    • /
    • 2018
  • Recent study shows that the main reason for limiting CZTS device performance lies in the low open circuit voltage, and crucial factor that could affect the $V_{oc}$ is secondary phases like ZnS existing in absorber layer and its interfaces. In this work, the $Cu_2ZnSnS_4$ thin film solar cells were prepared by sputtering CuSn and CuZn alloy targets. Through tuning the Zn/Sn ratios of the CZTS thin films, the crystal structure, morphology, chemical composition and phase purity of CZTS thin films were characterized by X-Ray Diffraction (XRD), scanning electron microscopy (SEM) equipped with an energy dispersive spectrometer (EDS) and Raman spectroscopy. The statistics data show that the CZTS solar cell with a ratio of Zn/Sn = 1.2 have the best power convention efficiency of 5.07%. After HCl etching process, the CZTS thin film solar cell with the highest efficiency 5.41% was obtained, which demonstrated that CZTS film solar cells with high efficiency could be developed by sputtering CuSn and CuZn alloy targets.

Fabrication of a SAW Filter Using a ZnO Thin Film deposited by RF Magnetron Sputtering (RF 마그네트론 스퍼터링법으로 증착된 ZnO 박막 SAW 필터의 제작)

  • Jung, Eun-Ja;Jang, Cheol-Yeong;Jung, Young-Chul;Choi, Hyun-Chul;Lee, Yong-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.141-144
    • /
    • 2003
  • This study proposes ZnO thin film as a piezoelectric material for SAW (surface acoustic wave) filter. The ZnO thin film with thickness $2.6{\mu}m$ was deposited (0001)-oriented sapphire by RF magnetron sputtering technique. IDTs (inter-digital transducers) electrodes were patterned upon SAW filter mask with solid finger structure unapodized using lift-off method on ZnO piezoelectric thin film. SAW propagation velocity was measured with the center frequency by HP 8753C network analyzer. A fabricated ZnO SAW filter exhibited a high propagation velocity of 5433 $^m/s$ and relatively insertion loss of -53.391dB at $\lambda=80{\mu}m$. The side-lobe attenuation of the center frequency was about 17dB. When the wavelength was $80{\mu}m$ $(\lambda/4=20{\mu}m)$, the center frequency was 67.907 MHz. $k^2$ (electromechanical coupling coefficient) was 15.84 %.

  • PDF

The Origin of Change in Luminescent Properties of ZnMgS:Mn Thin Film Phosphor with Varying Annealing Temperature

  • Lee, Dong-Chin;Kang, Jong-Hyuk;Jeon, Duk-Young;Yun, Sun-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1576-1579
    • /
    • 2005
  • With varying rapid thermal annealing (RTA) temperature, luminescence properties of $Zn_{0.75}Mg_{0.25}S:Mn$ thin film deposited by RF-magnetron sputtering technique were investigated. In this study, $Zn_{0.75}Mg_{0.25}S:Mn$ thin film phosphor showed more red emission than those of the previous studies when annealed around 600 or $650^{\circ}C$. Although all samples were deposited from identical source composition, a main peak wavelength of photoluminescence spectra of $Zn_{0.75}Mg_{0.25}S:Mn$ shifted toward shorter wavelengths depending upon increase of RTA temperature. The same dependence of wavelength on RTA temperature was also observed in cathodoluminescence as well as electroluminescence measurements. It was revealed that the change of the luminescence properties were originated from structural changes in $Zn_{0.75}Mg_{0.25}S:Mn$ thin film phosphor from cubic to hexagonal phases analyze using conventional X-ray pole figure mapping. The phase transition would be the origin of luminescence property changes with respect to RTA temperature.

  • PDF

Growth and Effect of Thermal Annealing for ZnIn2S4 Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE)법에 의한 ZnIn2S4 단결정 박막 성장과 열처리 효과)

  • Park, Chang-Sun;Hong, Kwang-Joon
    • Korean Journal of Materials Research
    • /
    • v.18 no.6
    • /
    • pp.318-325
    • /
    • 2008
  • Single crystal $ZnIn_2S_4$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $450^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $ZnIn_2S_4$ source at $610^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence (PL) and double crystal X-ray rocking curve (DCRC). The temperature dependence of the energy band gap of the $ZnIn_2S_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=2.9514\;eV-(7.24{\times}10^{-4}\;eV/K)T^2/(T+489\;K)$. After the as-grown $ZnIn_2S_4$ single crystal thin films were annealed in Zn-, S-, and In-atmospheres, the origin of point defects of $ZnIn_2S_4$ single crystal thin films has been investigated by the photoluminescence (PL) at 10 K. The native defects of $V_{Zn}$, $V_S$, $Zn_{int}$, and $S_{int}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the S-atmosphere converted $ZnIn_2S_4$ single crystal thin films to an optical p-type. Also, we confirmed that In in $ZnIn_2S_4$/GaAs did not form the native defects because In in $ZnIn_2S_4$ single crystal thin films existed in the form of stable bonds.

Growth of ZnO Thin films Depending on the Substrates by RF Sputtering and Analysis of Their Microstructures (기판의 결정구조에 따른 RF 스퍼터링 ZnO 박막의 성장과 미세구조 분석)

  • Yoo In-Sung;So Soon-Jin;Park Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.5
    • /
    • pp.461-466
    • /
    • 2006
  • To investigate the ZnO thin films which are interested in the next generation of short wavelength LEDs and Lasers, the ZnO thin films were deposited by RF sputtering system. At sputtering process of ZnO thin films, substrate temperature, work pressure respectively is $100^{\circ}C$ and 15 mTorr, and the purity of target is ZnO 5 N. The ZnO thin films were in-situ annealed at $600^{\circ}C$ in $O_2$ atmosphere. The thickness of ZnO thin films has implemented about $1.6{\mu}m$ at SEM analysis after in-situ annealing process. We have investigated the crystal structure of substrates, and so structural properties of ZnO thin films has estimate by using XRD, FWHM, FE-SEM and AFM. XRD and FE-SEM showed that ZnO thin films grown on substrates had a c-axis preferential orientation in the [0001] crystal direction. XPS spectra showed that ZnO thin film was showed a peak positions corresponding to the O1s and the Zn2p. As form above XPS, we showed that the atom ratio of Zn:O related 1:1.1504 on ZnO thin film, so we could obtained useful information for p-type ZnO thin film.