Browse > Article
http://dx.doi.org/10.3740/MRSK.2008.18.6.318

Growth and Effect of Thermal Annealing for ZnIn2S4 Single Crystal Thin Film by Hot Wall Epitaxy  

Park, Chang-Sun (Department of Metallurgical & Material Science Engineering, Chosun University)
Hong, Kwang-Joon (Department of Physics, Chosun University)
Publication Information
Korean Journal of Materials Research / v.18, no.6, 2008 , pp. 318-325 More about this Journal
Abstract
Single crystal $ZnIn_2S_4$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $450^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $ZnIn_2S_4$ source at $610^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence (PL) and double crystal X-ray rocking curve (DCRC). The temperature dependence of the energy band gap of the $ZnIn_2S_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=2.9514\;eV-(7.24{\times}10^{-4}\;eV/K)T^2/(T+489\;K)$. After the as-grown $ZnIn_2S_4$ single crystal thin films were annealed in Zn-, S-, and In-atmospheres, the origin of point defects of $ZnIn_2S_4$ single crystal thin films has been investigated by the photoluminescence (PL) at 10 K. The native defects of $V_{Zn}$, $V_S$, $Zn_{int}$, and $S_{int}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the S-atmosphere converted $ZnIn_2S_4$ single crystal thin films to an optical p-type. Also, we confirmed that In in $ZnIn_2S_4$/GaAs did not form the native defects because In in $ZnIn_2S_4$ single crystal thin films existed in the form of stable bonds.
Keywords
point defect; hot wall epitaxy; single crystal thin film; thermal annealing; photoluminescence;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 R. K. Ahrenkiel and T. R. Massopust, Appl. Phys. Lett., 43, 658 (1983)   DOI
2 P. Migliorato, and J. L. Shay, J. Appl. Phys., 146, 1777 (1975)   DOI   ScienceOn
3 K. J. Hong, and T. S. Jeong, J. Cryst. Growth, 172, 89 (1997)   DOI   ScienceOn
4 H. Fujita, J. Phys. Soc., Jpn., 20, 109 (1965)   DOI
5 Segall, B. and Marple, D. T. F., in : M. Aven and J. S. Prenerin (Eds), Physics and Chemistry of II-VI Compounds, North-Holland, Amsterdam, 340 (1967)
6 J. M. Ballingall, M. L. Wroge, D. J. Leopold, Appl. Phys. Lett., 48, 1273 (1986)   DOI
7 R. Korenstein, B. MaCleod, J. Cryst. Growth, 86, 382 (1988)   DOI   ScienceOn
8 V. P. Varshni, Physica, 34, 149 (1967)   DOI   ScienceOn
9 Shay, J. L. and Tell, J. H., Ternary chalcopyrite semiconductor : electronic properties, and applications, pergamon, chap. 4 (1975)
10 S. Wagner, J. L. Shay, and P. Migliorat, Appl. Phys. Lett., 25, 434 (1974)   DOI
11 F. G. Donika, S. I. emiletov, T. V. Donika, I. G. Mustya, Sov. Physic. Crystallogr. 15, 695 (1971)
12 D. cahen, P. J. Ireland, L. L. Kazmerski, and F. A. Thiel, J. Appl. Phys., 57, 4761 (1985)   DOI
13 D. Haneman and J. Szot, Appl. Phys. Lett., 46, 778 (1985)   DOI
14 V. Riede, H. Neumann and X. Nguyen, Appl. Phys. Lett., 28, 449 (1978)
15 I. Shih, C. H. Champness, and A. V. Shahihi, J. Solar cells, 16, (1984)
16 K. J. Hong, and T. S. Jeong, J. Cryst. Growth, 218, 19 (2000)   DOI   ScienceOn
17 W. Horig, and H. Sobotta, Thin Solid Films, 48, 67(1978)   DOI   ScienceOn
18 B. D. Cullity, Elements of X-ray Diffractions, Caddson- Wesley, chap 11, (1985)