• Title/Summary/Keyword: ZnO doping

Search Result 316, Processing Time 0.024 seconds

Effect of In2O3 Doping on the Properties of ZnO Films as a Transparent Conducting Oxide (투명전도성 ZnO 박막의 특성에 미치는 In2O3 첨가에 따른 영향)

  • Lee, Choon-Ho;Kim, Sun-Il
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.1
    • /
    • pp.57-61
    • /
    • 2004
  • Zinc Oxide (ZnO) have the crystal structure of wurtzite which is semiconducting oxide with band gap energy of 3.3eV. $In_2O_3$-doped ZnO films were fabricated by electron beam evaporation at $400^{\circ}C$ and their characteristics were investigated. The content of $In_2O_3$ in ZnO films had a marked effect on the electrical properties of the films. As $In_2O_3$ content decreased. $In_2O_3$-doped ZnO films was converted amorphous into crystallized films and showed a better characteristics generally as a transparent conducting oxide. As $In_2O_3$-doped ZnO films were prepared by $In_2O_3$-doped ZnO pellet with 0.2at% of $In_2O_3$ content, the value of resistivity was about $6.0 {\times} 10^{-3} {\Omega}cm$. The transmittance was higher than 85% throughout the visible range.

The studies of Structure and Ferromagnetism on Co doped ZnO powders (자성반도체 Co-doped ZnO 다결정계의 구조 및 강자성 특성)

  • 박정환;장현명;김민규
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.176-176
    • /
    • 2003
  • 강자성 반도체(DMS)는 반도체에 전이금속을 doping함으로써 반도체의 전자 수송 특성과 전이 금속 이온에 의한 자기적 특성을 동시에 발현할 수 있도록 설계된 물질로서 '스핀 전자공학'의 구현을 위해 현재 활발히 연구되고 있는 분야이다. 특히 높은 전기 전도도와 투명 광 특성을 가지는 ZnO계는 전이금속을 첨가 할 경우 상온에서도 강자성 특성을 보일 것이라는 연구가 발표 된 이후 큰 주목을 받고 있으며, 실제로 Tc가 상온 이상인 결과들이 최근 발표되고 있다. 그러나 PLD에 의해 증착 된 Co-doped ZnO 경우 강자성 물성의 재현성이 아주 낮은 것으로 알려져 있는 둥 강자성 발현의 기원이 아직도 명확히 규명되지 못한 상태이다. 이에 본 연구에서는 Co-doped ZnO 계의 강자성 발현의 기원을 밝히고자 고상 반응법을 이용하여 다결정계를 제조한 후 X-선 회절 분석과 Raman 분광법을 이용하여 제2차상의 존재 유무 및 Co 이온의 치환 정도를 분석하였다. 다음으로 방사광 EXAFS 분석을 행하여 ZnO내에서의 Co 이온의 원자가 상태를 분석하고, PPMS를 사용 M-T curve를 측정/분석함으로써 강자성 발현의 기원을 규명하고자 하였다.

  • PDF

High performance of ZnO thin film transistors using $SiN_x$ and organic PVP gate dielectrics

  • Kim, Young-Woong;Park, In-Sung;Kim, Young-Bae;Choi, Duck-Kyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.5
    • /
    • pp.187-191
    • /
    • 2007
  • The device performance of ZnO-thin film transistors(ZnO-TFTs) with gate dielectrics of $SiO_2,\;SiN_x$ and Polyvinylphenol(PVP) having a bottom gate configuration were investigated. ZnO-TFTs can induce high device performance with low intrinsic carrier concentration of ZnO only by controlling gas flow rates without additional doping or annealing processes. The field effect mobility and on/off ratio of ZnO-TFTs with $SiN_x$ were $20.2cm^2V^{-1}s^{-1}\;and\;5{\times}10^6$ respectively which is higher than those previously reported. The device adoptable values of the mobility of $1.37cm^2V^{-1}s^{-1}$ and the on/off ratio of $6{\times}10^3$ were evaluated from the device with organic PVP dielectric.

First-Principles Study of Magnetic Interactions between Transition Metal Ions in ZnO (ZnO내 전이 금속 불순물의 자기적 특성에 관한 제일원리 연구)

  • Lee, Eun-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.444-448
    • /
    • 2010
  • Based on first-principles calculations, we study the magnetic properties of Co, Ni, Fe, V, and Mn impurities in ZnO. The stabilities of the ferromagnetic state and the magnetic moment of each impurity largely depend on the amount of doped electron or hole. For lightly doped n-type ZnO, it is found that the doping of Ni ions is the most effective for inducing ferromagnetism, while Fe ions show the most stable ferromagnetic couplings for heavily doped n-type samples. The characteristics of the magnetic interactions of Co ions are similar with those of Fe ions, but Co ions require much larger amount of doped electron than Fe ions to show the ferromagnetic couplings. The ferromagnetic coupling between Mn and V ions is unstable in n-type conditions.

Effect of annealing temperature on the electrical characteristics of P-doped ZnO thin films

  • Kim, Jun-Kwan;Lim, Jung-Wook;Kim, Hyun-Tak;Kim, Sang-Hun;Yun, Sun-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1622-1624
    • /
    • 2007
  • In order to realize effective p-type doping in ZnO thin films, ZnO films were deposited on P-doped Silayers by RF-magnetron sputter deposition technique and annealed at various temperatures. The result indicated that ZnO film annealed at $700^{\circ}C$ showed p-type conduction with a high carrier concentration in the order of $10^{19}\;cm^{-3}$.

  • PDF

Sol-gel synthesis and luminescence of $Zn_2SiO_4$:Mn, Al phosphor (Sol-gel법에 의한 $Zn_2SiO_4$:Mn, Al 형광체의 합성과 발광특성)

  • Kim, Chang-Jun;Kwon, Myoung-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.271-278
    • /
    • 2006
  • Green light emitting $Zn_2SiO_4$Mn and Al co-doped $Zn_2SiO_4$:Mn phosphor were synthesized by a sol-gel method combined with a furnace firing. The luminescent properties of the sample have been investigated. We have found that the phosphor powder with uniform shape show the maximum luminescent intensity when it is prepared with sol-gel method and fired at relatively high temperature ($1100{\sim}1300^{\circ}C$).

  • PDF

Ga-ZnO film using electrochemical method (전기화학적 방법을 이용한 Ga-ZnO film)

  • Sim, Won-Hyeon;Kim, Yeong-Tae;Park, Mi-Yeong;Im, Dong-Chan;Lee, Gyu-Hwan;Jeong, Yong-Su
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.151-151
    • /
    • 2009
  • ZnO 박막은 큰 밴드 갭 및 가시광 영역에서 높은 광투과성을 가지며, 제조조건에 따라 비저항의 범위가 폭넓게 변화하므로 태양전지, 평판 디스플레이의 투명 전극뿐만 아니라 음향공전기, 바리스터 등에 이용되고 있다. ZnO 박막의 전도성을 향상시키기 위해서 일반적으로 Al, Ga, Ti, In, B, H(n-type), 등과 N, As(p-type)의 도펀트를 사용한다. 본 연구에서는 전기화학적인 방법을 사용하여 ITO/glass위에 ZnO film에 농도에 따른 Ga을 doping 하여 전기전도성 향상과 밴드갭을 넓힘으로서 전자의 recombination을 방지하여 유기태양전지의 효율을 높이는데 목적을 두었다.

  • PDF

ZnTe:O/CdS/ZnO intermediate band solar cells grown on ITO/glass substrate by pulsed laser deposition

  • Lee, Kyoung Su;Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.197.2-197.2
    • /
    • 2015
  • Low-cost, high efficiency solar cells are tremendous interests for the realization of a renewable and clean energy source. ZnTe based solar cells have a possibility of high efficiency with formation of an intermediated energy band structure by impurity doping. In this work, the ZnTe:O/CdS/ZnO structure was fabricated by pulsed laser deposition (PLD) technique. A pulsed (10 Hz) Nd:YAG laser operating at a wavelength of 266 nm was used to produce a plasma plume from an ablated a ZnTe target, whose density of laser energy was 4.5 J/cm2. The base pressure of the chamber was kept at a pressure of approximately $4{\times}10-7Torr$. ZnO thin film with thickness of 100 nm was grown on to ITO/glass, and then CdS and ZnTe:O thin film were grown on ZnO thin film. Thickness of CdS and ZnTe:O were 50 nm and 500 nm, respectively. During deposition of ZnTe:O films, O2 gas was introduced from 1 to 20 mTorr. For fabricating ZnTe:O/CdS/ZnO solar cells, Au metal was deposited on the ITO film and ZnTe:O by thermal evaporation method. From the fabricated ZnTe:O/CdS/ZnO solar cell, current-voltage characteristics was measured by using HP 4156-a semiconductor parameter analyzer. Finally, solar cell performance was measured using an Air Mass 1.5 Global (AM 1.5 G) solar simulator with an irradiation intensity of 100 mW cm-2.

  • PDF

ZnO nanoparticles with different concentrations inside organic solar cell active layer

  • Saravanan, Shanmugam;Ismail, Yasser A.M.;Silambarasan, Murugesan;Kishi, Naoki;Soga, Tetsuo
    • Advances in Energy Research
    • /
    • v.4 no.4
    • /
    • pp.275-284
    • /
    • 2016
  • In the present work, ZnO nanoparticles (NPs) have been dispersed alone in the same solvent of the active layer for improving performance parameters of the organic solar cells. Different concentrations of the ZnO NPs have been blended inside active layer of the solar cell based on poly(3-hexylthiophene) (P3HT), which forms the hole-transport network, and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), which forms the electron-transport network. In the present investigations, the ZnO NPs may represent an efficient tool for improving light harvesting through light scattering inside active layer, electron mobility, and electron acceptance strength which tend to improve photocurrent and performance parameters of the investigated solar cell. The fill factor (FF) of the ZnO-doped solar cell increases nearly 14% compared to the non-doped solar cell when the doping is 50%. The present investigations show that ZnO NPs improve power conversion efficiency of the solar cell from 1.23% to 1.64% with increment around 25% that takes place after incorporation of 40% as a volume ratio of the ZnO NPs inside P3HT:PCBM active layer.