• 제목/요약/키워드: ZnO(Zinc Oxide)

검색결과 777건 처리시간 0.046초

Power Generating Characteristics of Zinc Oxide Nanorods Grown on a Flexible Substrate by a Hydrothermal Method

  • Choi, Jae-Hoon;You, Xueqiu;Kim, Chul;Park, Jung-Il;Pak, James Jung-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권4호
    • /
    • pp.640-645
    • /
    • 2010
  • This paper describes the power generating property of hydrothermally grown ZnO nanorods on a flexible polyethersulfone (PES) substrate. The piezoelectric currents generated by the ZnO nanorods were measured when bending the ZnO nanorod by using I-AFM, and the measured piezoelectric currents ranged from 60 to 100 pA. When the PtIr coated tip bends a ZnO nanorod, piezoelectrical asymmetric potential is created on the nanorod surface. The Schottky barrier at the ZnO-metal interface accumulates elecntrons and then release very quickly generating the currents when the tip moves from tensile to compressed part of ZnO nanorod. These ZnO nanorods were grown almost vertically with the length of 300-500 nm and the diameter of 30-60 nm on the Ag/Ti/PES substrate at $90^{\circ}C$ for 6 hours by hydrothermal method. The metal-semiconductor interface property was evaluated by using a HP 4145B Semiconductor Parameter Analyzer and the piezoelectric effect of the ZnO nanorods were evaluated by using an I-AFM. From the measured I-V characteristics, it was observed that ZnO-Ag and ZnO-Au metal-semiconductor interfaces showed an ohmic and a Schottky contact characteristics, respectively. ANSYS finite element simulation was performed in order to understand the power generation mechanism of the ZnO nanorods under applied external stress theoretically.

Praseodymium계 ZnO 바리스터의 제조 및 미세구조 연구 (Zinc Oxide Varistors with Praseodymium Oxide)

  • 소진중;한세원;김형식;조한구;김인성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 C
    • /
    • pp.1342-1344
    • /
    • 1997
  • Zinc oxide varistors which contain rare earth metal oxides have been developed. These Varistors are widely used for low voltage surge-protection devices and high voltage arresters for electric power stations. The characteristics of varistors with praseodymium oxide as a principal additive are discussed. A two-phase microstructure with an intergranular phase between the ZnO grains.

  • PDF

표면 텍스쳐된 ZnO:Al 투명전도막 증착 및 특성 (The Deposition and Properties of Surface Textured ZnO:Al Films)

  • 유진수;이정철;김석기;윤경훈;박이준;이준신
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권9호
    • /
    • pp.378-382
    • /
    • 2003
  • Transparent conductive oxides (TCO) are necessary as front electrode for most thin film solar cell. In our paper, transparent conducting aluminum-doped Zinc oxide films (ZnO:Al) were prepared by rf magnetron sputtering on glass (Corning 1737) substrate as a variation of the deposition condition. After deposition, the smooth ZnO:Al films were etched in diluted HCI (0.5%) to examine the electrical and surface morphology properties as a variation of the time. The most important deposition condition of surface-textured ZnO films by chemical etching is the processing pressure md the substrate temperature. In low pressures (0.9mTorr) and high substrate temperatures ($\leq$$300^{\circ}C$), the surface morphology of films exhibits a more dense and compact film structure with effective light-trapping to apply the silicon thin film solar cells.

Surface Textured ZnO:Al 투명전도막 제작 및 특성 (The fabrication and properties of surface textured ZnO:Al films)

  • 유진수;이정철;강기환;김석기;윤경훈;송진수;박이준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.391-394
    • /
    • 2002
  • Transparent conductive oxides (TCO) are necessary as front electrode for most thin film solar cell. In our paper, transparent conducting aluminum-doped Zinc oxide films (ZnO:Al) were prepared by rf magnetron sputtering on glass (Corning 1737) substrate as a variation of the deposition condition. After deposition, the smooth ZnO:Al films were etched in diluted HCl (0.5%) to examine the electrical and surface morphology Properties as a variation of the time. The most important deposition condition of surface-textured ZnO films by chemical etching is the processing pressure and the substrate temperature. In low pressures (0.9 mTorr) and high substrate temperatures ($\leq$30$0^{\circ}C$), the surface morphology of films exhibits a more dense and compact film structure with effective light-trapping to apply the silicon thin film solar cells.

  • PDF

Li Dopant가 ZnO 세라믹스의 전기적 특성과 미세 구조에 미치는 영향 (Effects of Li Dopant on Electrical Properties and Microstructure of ZnO Ceramics)

  • 전민철;고중혁
    • 한국전기전자재료학회논문지
    • /
    • 제25권4호
    • /
    • pp.282-285
    • /
    • 2012
  • It is well known that Zinc Oxide (ZnO) is an attractive material for its various applications. ZnO has been mostly used as a transparent conducting oxide in liquid crystal displays, solar cells due to its advantages of low cost, high productivity, and excellent electrical conductivity. Notably, flexible-dye-sensitized solar cells (DSSCs) based on polyethylene terephthalate (PET) substrates require low temperature sintering processing conditions. Therefore, low temperature processing conditions have been strongly required for transparent conducting film applications. In this paper, we prepared low temperature-sintered ZnO ceramics employing Li as a sintering aid.

Transparent ZnO based thin film transistors fabricated at room temperature with high-k dielectric $Gd_2O_3$ gate insulators

  • Tsai, Jung-Ruey;Li, Chi-Shiau;Tsai, Shang-Yu;Chen, Jyun-Ning;Chien, Po-Hsiu;Feng, Wen-Sheng;Liu, Kou-Chen
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.374-377
    • /
    • 2009
  • The characteristics of the deposited thin films of the zinc oxide (ZnO) at different oxygen pressures will be elucidated in this work. The resistivity of ZnO thin films were dominated by the carrier concentration under high oxygen pressure conditions while controlled by the carrier mobility at low oxygen ambiences. In addition, we will show the characteristics of the transparent ZnO based thin film transistor (TFT) fabricated at a full room temperature process with gate dielectric of gadolinium oxide ($Gd_2O_3$) thin films.

  • PDF

뇌서지가 ZnO바리스터에 미치는 영향 (Effects of Lightning Surges on the Life of ZnO Varistors)

  • 이봉;이수봉;강성만;이복희
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권5호
    • /
    • pp.257-262
    • /
    • 2006
  • To evaluate the change in protective levels of zinc oxide (ZnO) varistors after the surge absorption, this paper investigated the effects of the number of injection and amplitude of lightning surges on the life of ZnO varistors for low voltages. Leakage currents flowing through ZnO varistors subjected to the $8/20{\mu}s$ impulse currents under 60 Hz AC voltages were measured. The surge simulator system ECAT that can generate $8/20{\mu}s$ impulse currents with a peak short-circuit of 5 $[kA_p]$ was used. The ZnO varistor leakage current increases with exposure to impulse current, and the number of injection of $8/20{\mu}s$ impulse currents to breakdown was inversely proportional to the amplitude of the test current. Behaviors of ZnO varistor leakage currents were strongly dependent on the number of injection and amplitude of $8/20{\mu}s$ impulse currents. ZnO varistors degrade gradually when subjected to impulse current, and the resistive leakage current flowing through ZnO varistors subjected to the $8/20{\mu}s$ impulse currents under 60 Hz AC voltages was significantly increased after a certain number of injection that is dependent on the amplitude of the test impulse current. As a result, the life of ZnO varistors mainly depends on the amplitude and occurrence frequency of lightning surges.

초음파 분무 열분해법에 의해 질산아연용액으로부터 구형의 ZnO 미분말 제조 (Spferical fine ZnO Particles prepared from zinc nitrate by Ultrasonic Spray Pyrolysis technique)

  • 이서영;김영도;신건철
    • 한국결정성장학회지
    • /
    • 제1권2호
    • /
    • pp.46-58
    • /
    • 1991
  • $Zn(NO_3)_2\cdot6H_2O$ 를 사용하여 출발용액으로 $Zn(NO_3)_2\cdot6H_2O$(aq.)용액을 각각 1M, 0.5M, 0.25M, 0.1M의 농도로 제조하여 초음파 진동자에 의해 액적을 발생시킨후, 2.3cm/sec의 유속으로 건조 및 열분해하여 ZnO분말을 합성하였다. 이때 건조 온도는 $200^{\circ}C$, 열분해 온도는 $600^{\circ}C$였다. 제조된 ZnO분말의 열적특성을 TG-DTA로 측정하였고, IR로 미분해물 및 흡착 가스의 성분을 조사하였다. 결정상 및 crystallite의 크기를 XRD로 분석하였고, 입자의 형태는 SEM과 TEM으로 관찰한 후 입자 크기와 입도분포를 SEM 사진으로부터 측정하였다. 합성 분말은 hexagonal의 결정구조를 갖는 Zinc oxide였다. 입자의 형태는 대부분 구형이고, 약 40nm 크기의 일차입자로 구성된 이차입자였다. 평규 입자 크기는 $0.28-0.61{\mu}m$ 이고 입도 분포도 좁았다.

  • PDF

Fabrication of Diameter-tunable Well-aligned ZnO Nanorod Arrays via a Sonochemical Route

  • Jung, Seung-Ho;Oh, Eu-Gene;Lee, Kun-Hong;Jeong, Soo-Hwan;Yang, Yo-Sep;Park, Chan-Gyung
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권9호
    • /
    • pp.1457-1462
    • /
    • 2007
  • A simple and facile sonochemical route was described for the fabrication of diameter-controlled ZnO nanorod arrays on Si wafers. The diameter of ZnO nanorods was controlled by the concentration of zinc cations and hydroxyl anions in aqueous precursor solution. At high concentration of the precursor solution, thick ZnO nanorod arrays were formed. On the contrary, thin ZnO nanorod arrays were formed at low concentration of the precursor solution. The average diameter of ZnO nanorods varies from 40 to 200 nm. ZnO nanorod arrays with sharp tip were also fabricated by the step-by-step decrease in precursor solution concentration. The crystal structure and optical characteristics of ZnO nanorods were investigated by transmission electron microscopy, X-ray diffraction, and photoluminescence spectroscopy. Growth mechanism of ZnO nanorod arrays was also proposed.

Enhanced Photocurrent from CdS Sensitized ZnO Nanorods

  • Nayak, Jhasaketan;Son, Min-Kyu;Kim, Jin-Kyoung;Kim, Soo-Kyoung;Lee, Jeong-Hoon;Kim, Hee-Je
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권6호
    • /
    • pp.965-970
    • /
    • 2012
  • Structure and optical properties of cadmium sulphide-zinc oxide composite nanorods have been evaluated by suitable characterization techniques. The X-ray diffraction spectrum contains a series of peaks corresponding to reflections from various sets of lattice planes of hexagonal ZnO as well as CdS. The above observation is supported by the Micro-Raman spectroscopy result. The optical reflectance spectra of CdS-ZnO is compared with that of ZnO where we observe an enhanced absorption and hence diminished reflection from CdS-ZnO compared to that from only ZnO. A very small intensity of the visible photoluminescence peak observed at 550 nm proves that the ZnO nanorods have very low concentrations of point defects such as oxygen vacancies and zinc interstitials. The photocurrent in the visible region has been significantly enhanced due to deposition of CdS on the surface of the ZnO nanorods. CdS acts as a visible sensitizer because of its lower band gap compared to ZnO.