• Title/Summary/Keyword: ZnBO

Search Result 265, Processing Time 0.036 seconds

Contents of Heavy Metals in Fishes from the Korean Coasts (한국 연안산 어류의 중금속 함량)

  • Mok, Jong-Soo;Shim, Kil-Bo;Cho, Mi-Ra;Lee, Tae-Seek;Kim, Ji-Hoe
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.4
    • /
    • pp.517-524
    • /
    • 2009
  • We collected 177 fishes representing 53 species of fish from the eastern (Pohang), western (Gunsan), and southern (Tongyeong) coasts of Korea, and measured their heavy metal contents. The mean recoveries of the heavy metals extracted from cod muscle (certified reference material, CRM) were $88.7{\sim}100.6%$. The mean levels of the heavy metals in the samples taken from the edible portion of each fish were high in the order of Zn ($8.981{\pm}4.835{\mu}g/g$), Cu ($0.755{\pm}0.507{\mu}g/g$), and Mn ($0.433{\pm}0.699{\mu}g/g$), which are necessary metals in the human body, and then followed by Cr ($0.206{\pm}0.181{\mu}g/g$), Ni ($0.081{\pm}0.110{\mu}g/g$), Pb ($0.038{\pm}0.046{\mu}g/g$), Cd ($0.017{\pm}0.023{\mu}g/g$). The average daily intakes of the heavy metals by the fishes were as follows: Cd (0.81 ${\mu}g$), Cr (9.98 ${\mu}g$), Cu (36.63 ${\mu}g$), Mn (21.01 ${\mu}g$), Ni (3.93 ${\mu}g$), Pb (1.84 ${\mu}g$) and Zn (435.58 ${\mu}g$). The average weekly intakes of Cd, Cu, Pb and Zn by the fishes were 1.35%, 0.12%, 0.86%, and 0.73% respectively, as compared with PTWI (Provisional Tolerable Weekly Intakes) established by FAO/WHO Expert Committee for Food Safety Evaluation.

Inhibitory Effects of Panax ginseng C. A. Mayer Treated with High Temperature and High Pressure on Oxidative Stress (산화적 스트레스에 대한 고온고압처리 인삼의 억제 효과)

  • Yoon, Bo-Ra;Lee, Young-Jun;Hong, Hee-Do;Lee, Young-Chul;Kim, Young-Chan;Rhee, Young Kyoung;Kim, Kyung-Tack;Lee, Ok-Hwan
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.4
    • /
    • pp.800-806
    • /
    • 2012
  • Reactive oxygen species (ROS) are produced by oxidative stresses which cause various chronic diseases such as diabetes and obesity. Ginseng (Panax ginseng C.A. Mayer) has been reported to contain various biological activities such as anti-cancer, anti-diabetic, neuroprotective, radioprotective, anti-amnestic and anti-aging effects. In this study, we investigated the effects of Panax ginseng, treated with high temperatures and high pressures, on oxidative stress in C2C12 myoblasts and 3T3-L1 adipocytes. Oxidative stress was induced in the C2C12 cells through the introduction of $H_2O_2$ (1 mM), and cells were then treated with various ginseng preparations: dried white ginseng (DG), steamed ginseng (SG) and high temperature and high pressure treated ginseng (HG). In addition, 3T3-L1 preadipocytes were treated with various ginsengs for up to 8 days following standard induction of differentiation. Our results show that HG treatment significantly protected oxidative stress in both cell lines and enhanced gene expression of antioxidant enzymes. Therefore, in this study, we investigated the protective effects of ginseng on the oxidative stress of adipocytes and muscle cells.

Emission Characteristics of Mercury in Zn Smelting Process (아연제련시설에서의 수은 배출특성)

  • Park, Jung-Min;Lee, Sang-Bo;Kim, Hyung-Chun;Song, Duk-Jong;Kim, Min-Su;Kim, Min-Jung;Kim, Yong-Hee;Lee, Sang-Hak;Kim, Jong-Chun;Lee, Suk-Jo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.5
    • /
    • pp.507-516
    • /
    • 2010
  • Stationary combustion sources such as coal-fired power plants, waste incinerators, industrial manufacturing, etc. are recognized as major sources of mercury emissions. Due to rapid economic growth, zinc production in Korea has increased significantly during the last 30 years. Total zinc production in Korea exceeded 739,000 tons in 2008, and Korea is currently the third largest zinc producing country in the world. Previous studies have revealed that zinc smelting has become one of the largest single sectors of total mercury emissions in the World. However, studies on this sector are very limited, and a large gap in the knowledge regarding emissions from this sector needs to be bridged. In this paper, Hg emission measurements were performed to develop emission factors from zinc smelting process. Stack sampling and analysis were carried out utilizing the Ontario Hydro method and US EPA method 101A. Preliminary data showed that $Hg^0$ concentrations in the flue gas ranged from 4.56 to $9.90\;{\mu}g/m^3$ with an average of $6.40\;{\mu}g/m^3$, Hg(p) concentrations ranged from 0.03 to $0.09\;{\mu}g/m^3$ with an average of $0.04\;{\mu}g/m^3$, and RGM concentrations ranged from 0.23 to $1.17\;{\mu}g/m^3$ with an average of $6.40\;{\mu}g/m^3$. To date, emission factors of 7.5~8.0 g/ton for Europe, North America and Australia, and of 20 or 25 g/ton for Africa, Asia and South America are widely accepted by researchers. In this study, Hg emission factors were estimated using the data measured at the commercial facilities as emissions per ton of zinc product. Emission factors for mercury from zinc smelting pross ranged from 4.32 to 12.96 mg/ton with an average of 8.31 mg/ton. The emission factors that we obtained in this study are relatively low, considering Hg contents in the zinc ores and control technology in use. However, as these values are estimated by limited data of single measurement of each, the emission factor and total emission amount must be updated in future.

Binding Site of Heavy Metals in the Cell of Heavy Metal-Tolerant Microorganisms (중금속 내성균의 세포내 중금속 결합 위치)

  • Cho, Ju-Sik;Lee, Hong-Jae;Lee, Young-Han;Sohn, Bo-Kyoon;Jung, Yeun-Kyu;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.3
    • /
    • pp.246-253
    • /
    • 1998
  • Heavy metal-tolerant microorganisms, such as Pseudomonas putida, P. aeruginosa, P. chlororaphis and P. stutzeri which possessed the ability to accumulate cadmium, lead, zinc and copper, respectively, were isolated from industrial wastewaters and mine wastewaters polluted with various heavy metals. The binding sites of heavy metal in the cells were investigated by chemical modification of functional groups the cell walls. To determine the binding sites of heavy metal in the cells, electrochemical charge of amine and carboxyl groups in the cell walls of heavy metal-tolerant microorganisms were chemically modified. Chemical modifications of amine groups did not affect the heavy metal uptake as compared to native cell walls. In contrast, modifications of carboxyl groups drastically decreased heavy metal uptake as compared to native cell walls, and electron microscopy confirmed that the form and structure of the heavy metal uptake were different from those of native cell walls. The results suggested that the carboxyl groups were the major sites of heavy metal uptake in the heavy metal-tolerant microorganism cell.

  • PDF

Biological Activity of Fermented Silkworm Powder (발효누에분말의 생리활성)

  • Cha, Jae-Young;Kim, Yong-Soon;Ahn, Hee-Young;Eom, Kyung-Eun;Park, Bo-Kyung;Jun, Bang-Sil;Cho, Young-Su
    • Journal of Life Science
    • /
    • v.19 no.10
    • /
    • pp.1468-1477
    • /
    • 2009
  • The comparative effects of the fibrinolytic, and tyrosinase inhibition activities and electrophoretical protein patterns with freeze-drying silkworm powder (FDSW), heating-drying silkworm powder (HDSW) and fermented silkworm powder by Bacillus subtilis or Lactobacillus hilgardii were investigated. When total protein patterns of FDSW, HDSW, both fermented SW, were analyzed by native- and SDS-polyacrylamide gel electrophoresis (PAGE), there were slightly varietal differences in electrophoretical protein patterns. Major minerals of FDSW and HDSW were K, Ca, Mg, and Zn. Major compositional amino acids of FDSW and HDSW were glycine, alanine, glutamic acid, aspartic acid, and serine. Major fatty acids of FDSW and HDSW were linolenic acid, oleic acid, and palmitic acid. Fibriolytic activity was the highest in the fermented FDSW by 5% B. subtilis among the various samples. Tyrosinase inhibition activity was higher in the water and 70% methanolic extract of FDSW than in HDSW. DPPH radical scavenging activity was slightly stronger in HDSW than in FDSW. In addition, DPPH radical scavenging activity was higher in FDSW or HDSW fermented by L. hilgardii than that fermented by B. subtilis, however, all samples exhibited a relatively low activity compared to the butylated hydroxytoluene (BHT). These results may provide the basic data to understand the biological activities of fermented SW.

Exposure Assessments of Environmental Contaminants in Ansim Briquette Fuel Complex, Daegu(II) - Concentration distribution and exposure characteristics of TSP, PM10, PM2.5, and heavy metals - (대구 안심연료단지 환경오염물질 노출 평가(II) - TSP, PM10, PM2.5 및 중금속 농도분포 및 노출특성 -)

  • Jung, Jong-Hyeon;Phee, Young-Gyu;Lee, Jun-Jung;Oh, In-Bo;Shon, Byung-Hyun;Lee, Hyung-Don;Yoon, Mi-Ra;Kim, Geun-Bae;Yu, Seung-do;Min, Young-Sun;Lee, Kwan;Lim, Hyun-Sul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.3
    • /
    • pp.380-391
    • /
    • 2015
  • Objectives: The objective of this study is to assess airborne particulate matter pollution and its effect on health of residents living near Ansim Briquette Fuel Complex and its vicinities. Also, this study measured and analyzed the concentration of TSP, $PM_{10}$, $PM_{2.5}$, and heavy metals which influences on the environmental and respiratory disease in Ansim Briquette Fuel Complex, Daegu, Korea. Methods: In this study, we analyzed various environmental pollutants such as particulate matter and heavy metals from Ansim Briquette Fuel Complex that adversely affected local residents's health. In particular, we verified the concentration distribution and characteristics of exposure for TSP, $PM_{10}$, and $PM_{2.5}$ among particulate matters, and heavy metals(Cd, Cr, Cu, Mn, Ni, Pb, Fe, Zn, and Mg). In that regard, the official test method on air pollution in Korea for analysis of particulate matter and heavy metal in atmosphere were conducted. The large capacity air sampling method by the official test method on air pollution in Korea were applied for sampling of heavy metals in atmosphere. In addition, we evaluated the concentration of seasonal environmental pollutants for each point of residence in Ansim Briquette Fuel Complex and surrounding area. The sampling measured periods for air pollutants were from August 11, 2013 to February 21, 2014. Furthermore, we measured and analyzed the seasonal concentrations(summer, autumn and winter). Results: The average concentration for TSP, $PM_{10}$, and $PM_{2.5}$ by direct influence area at Ansim Briquette Fuel Complex were 1.7, 1.4 and 1.9 times higher than reference region. In analysis results of seasonal concentrations for particulate matter in four direct influence and reference area, concentration levels for winter were generally somewhat higher than concentrations for summer and autumn. The average concentrations for Cd, Cr, Mn, Ni, Pb, Fe, and Zn in direct influence area at Ansim Briquette Fuel Complex were $0.0008{\pm}0.0004{\mu}g/Sm^3$, $0.0141{\pm}0.0163{\mu}g/Sm^3$, $0.0248{\pm}0.0059{\mu}g/Sm^3$, $0.0026{\pm}0.0011{\mu}g/Sm^3$, $0.0272{\pm}0.0084{\mu}g/Sm^3$, $0.4855{\pm}0.1862{\mu}g/Sm^3$, and $0.3068{\pm}0.0631{\mu}g/Sm^3$, respectively. In particularly, the average concentrations for Cd, Cr, Mn, Ni, Pb, Fe, and Zn in direct influence area at Ansim Briquette Fuel Complex were 1.9, 3.6, 2.1, 1.9, 1.4, 2.6, and 1.2 times higher than reference area, respectively. The continuous monitoring and management were required for some heavy metals such as Cr and Ni. Moreover, the average concentration in winter for particulate matter in direct influence area at Ansim Briquette Fuel Complex were generally higher than concentrations in summer and autumn. Also, average concentrations for TSP, $PM_{10}$, and $PM_{2.5}$ were from 1.5 to 2.0 times, 1.2 to 1.8 times, and 1.1 to 2.3 times higher than reference area, respectively. In results for seasonal atmospheric environment, TSP, $PM_{10}$, $PM_{2.5}$, and heavy metal concentrations in direct influence area were higher than reference area. Especially, the concentrations in C station were a high level in comparison with other area. Conclusions: In the results, some particulate matters and heavy metals were relatively high concentration, in order to understand the environmental pollution level and health effect in surrounding area at Ansim Briquette Fuel Complex. The concentration of some heavy metals emitted from direct influence area at Ansim Briquette Fuel Complex were relatively higher than reference area. In particular, average concentration for heavy metals in this study were higher than average concentrations in air quality monitoring station for heavy metal for 7 years in Deagu metropolitan region. Especially, the residents near Ansim Briquette Fuel Complex may be exposed to the pollutants(TSP, $PM_{10}$, $PM_{2.5}$, and heavy metals, etc) emitted from the factories in Ansim Briquette Fuel Complex.

Physico-Chemical Properties of Soils at Red Pepper, Garlic and Onion Cultivation Areas in Korea (우리나라 고추, 마늘 및 양파 주산지 밭토양의 물리·화학적 특성)

  • Sohn, Bo-Kyoon;Cho, Ju-Sik;Kang, Jong-Gu;Cho, Ja-Yong;Kim, Kil-Yong;Kim, Hyun-Woo;Kim, Hong-Lim
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.2
    • /
    • pp.123-131
    • /
    • 1999
  • To get the basic information for the improvement of the optimum levels of upland soil fertility and fertilizer application, the soil samples in two hundred fifteen site were collected from the major condiment vegetable cultivation areas such as red pepper, garlic and onion fields. Physico-chemical properties of the soil samples were investigated. Soil texture distribution of soil samples in red pepper, garlic and onion cultivation areas was in order of loam (L), sandy loam (SL), silt loam (SiL) and clay loam (CL) (35.4, 31.6, 14.9 and 7.0%, respectively). The average pH of soil in garlic and onion cultivation areas were over pH 6.0, whereas in red pepper was under pH 5.5. The frequency distribution of soil pH in total sampling sites were 58.7% in under pH 6.0 and 21.4% in below pH 5.0, in contrast to 10.3% in over pH 7.0. The organic matter contents were in the range of $20{\sim}30g\;kg^{-1}$, and the onion field soils was a little higher than those in red pepper or garlic. The available phosphate contents were in the range of $719{\sim}746mg\;kg^{-1}$ and were not different among in red pepper, garlic and onion. The frequency distribution of available phosphate in total sampling sites were found 62.8% of above $600mg\;kg^{-1}$, which was over the standard level for upland soil improvement, and then 22.3% was exceeded $1,000mg\;kg^{-1}$, especially. In the exchangeable cations, the K and Ca contents in garlic (1.27 and $9.11cmol\;kg^{-1}$) and onion (1.20 and $8.39cmol\;kg^{-1}$) were higher than in red pepper (0.96 and $5.87cmol\;kg^{-1}$), respectively. The Mg contents in garlic field soils ($2.17cmol\;kg^{-1}$) were higher than those in red pepper and onion (1.51 and $1.80cmol\;kg^{-1}$). This exchangeable K, Ca and Mg contents were higher than the standard level for upland soil improvement. The contents of microelement were ranged in $54.3{\sim}60.1mg\;kg^{-1}$ for Fe, $31.3{\sim}42.3mg\;kg^{-1}$ for Mn, $1.7{\sim}2.3mg\;kg^{-1}$ for Cu and $4.8{\sim}5.5mg\;kg^{-1}$ for Zn, respectively.

  • PDF

The Effect of Long-term Application of Different Organic Material Sources on Chemical Properties of Upland Soil (유기물원이 다른 퇴비연용이 밭토양의 화학성 변화에 미치는 영향)

  • Kim, Jong-Gu;Lee, Kyeong-Bo;Lee, Sang-Bok;Lee, Deog-Bae;Kim, Seong-Jo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.3
    • /
    • pp.239-253
    • /
    • 1999
  • The objective of this study was to determine the effects of various kinds of composts on the change of soil chemical properties in upland soils. Field experiments were conducted in the loam and sandy loam soils. Various kinds of composts such as poultry manure compost(PMC), cow manure compost(CMC), human excrement sludge(HES), and food industrial sludge compost(FISC) were applied annually at rates of 0, 40, and $80Mg\;ha^{-1}$ to soils grown with soybean and maize plants for 4 years during 1994 to 1997. The results of this study were as follows : The continuous application of human excrement sludge decreased soil pH up to 4.4~5.0, while other compost treatments increased soil pH compared with control plot. The EC increased initially and showed their maximum values at 20days after compost application, and then decreased up to 40 days, thereafter kept a certain level. The available phosphorous accumulated at 0~20cm depth in loam soil, and 0~50cm in sandy loam soil. Annual accumulation rates were 17% higher in sandy loam soil than loam soil. The more compost application rates and times, the higher base saturation percentage increased in upland soils. Four year's application at a rate of $80Mg\;ha^{-1}$ per year increased the base saturation percentage to 87~91% compared with 45% at control plot in the loam soil. While in sandy loam soil only three year's application of same rate increased the base saturation percentage to 81~92% compared with 30.4% at control plot. The average annual increasing rate of base saturation percentage at the same application rates of composts were higher in sandy loam soil by 2.0~3.7 times than in loam soil. The application of compost increased the exchangeable Ca, Mg, and K contents of soils by 2, 2~3, and 3~5 times, respectively, compared with the control. The contents of exchangeable canons were high in surface soil. and decreased with increase of soil depths. In the case of heavy metal content, there were no difference at the application of PMC and CMC but Ni. Fe, Zn, Cu was increased a little when the HES applied, and Ni and Cr was increased application with FISC.

  • PDF

An Investigation of the Hazards Associated with Cucumber and Hot Pepper Cultivation Areas to Establish a Good Agricultural Practices (GAP) Model (오이와 고추생산 환경에서의 GAP 모델 개발을 위한 위해요소 조사)

  • Shim, Won-Bo;Lee, Chae-Won;Jeong, Myeong-Jin;Kim, Jeong-Sook;Ryu, Jae-Gee;Chung, Duck-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.108-114
    • /
    • 2014
  • To analyze the hazards associated with cucumber and hot pepper cultivation areas, a total of 72 samples were obtained and tested to detect the presence of biological (sanitary indicative, pathogenic bacteria and fungi) and chemical hazards (heavy metals and pesticide residues). The levels of sanitary indicative bacteria (aerobic plate counts and coliforms) and fungi were ND-7.2 and ND-4.8 log CFU/(g, mL, hand, or $100cm^2$) in cucumber cultivation areas, and ND-6.8 and 0.4-5.3 log CFU/(g, mL, hand, or $100cm^2$) in hot pepper cultivation areas. More specifically, the soil of hot pepper cultivation areas was contaminated with coliforms at a maximum level of 5.6 log CFU/g. Staphylococcus aureus was detected only in glove samples at a level of 1.4 log CFU/$100cm^2$ and Bacillus cereus was detected in the majority of samples at a level of ND-4.8 log CFU/(g, mL, hand, or $100cm^2$). Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella spp. were not detected. Heavy metal (Zn, Cu, Ni, Pb, and Hg) chemical hazards were detected at levels lower than the regulation limit. Residual insecticides were not detected in cucumbers; however, hexaconazole was detected at a level of 0.016 mg/kg (maximum residue limit: 0.3 mg/kg) in hot peppers.

The Effect of Long-term Application of Different Organic Material Sources on Chemical Properties of Upland Soil (유기물원이 다른 퇴비연용이 밭토양의 화학성 변화에 미치는 영향)

  • Kim, Jong-Gu;Lee, Kyeong-Bo;Lee, Sang-Bok;Lee, Deog-Bae;Kim, Seong-Jo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.6
    • /
    • pp.416-431
    • /
    • 2000
  • The objective of this study was to determine the effects of various kinds of composts on the change of soil chemical properties in upland soils. Field experiments were conducted in the loam and sandy loam soils. Various kinds of composts such as poultry manure compost(PMC), cow manure compost(CMC), human excrement sludge(HES), and food industrial sludge compost(FISC) were applied annually at rates of 0, 40, and $80Mg\;ha^{-1}$ to soils grown with soybean and maize plants for 4 years during 1994 to 1997. The results of this study were as follows : The continuous application of human excrement sludge decreased soil pH up to 4.4~5.0, while other compost treatments increased soil pH compared with control plot. The EC increased initially and showed their maximum values at 20days after compost application, and then decreased up to 40 days, thereafter kept a certain level. The available phosphorous accumulated at 0~20cm depth in loam soil, and 0~50cm in sandy loam soil. Annual accumulation rates were 17% higher in sandy loam soil than loam soil. The more compost application rates and times, the higher base saturation percentage increased in upland soils. Four year's application at a rate of $80Mg\;ha^{-1}$ per year increased the base saturation percentage to 87~97% compared with 45% at control plot in the loam soil. While in sandy loam soil only three year's application of same rate increased the base saturation percentage to 81~92% compared with 30.4% at control plot. The average annual increasing rate of base saturation percentage at the same application rates of composts were higher in sandy loam soil by 2.0~3.7 times than in loam soil. The application of compost increased the exchangeable Ca, Mg, and K contents of soils by 2, 2~3, and 3~5 times, respectively, compared with the control. The contents of exchangeable cations were high in surface soil, and decreased with increase of soil depths. In the case of heavy metal content, there were no difference at the application of PMC and CMC but Ni, Fe, Zn, Cu was increased a little when the HES applied, and Ni and Cr was increased application with FISC.

  • PDF