• 제목/요약/키워드: Zn-based oxide

검색결과 259건 처리시간 0.03초

광전기화학적 물 산화용 산화아연 나노막대 광양극의 합성 및 특성평가 (ZnO Nanorod Array as an Efficient Photoanode for Photoelectrochemical Water Oxidation)

  • 박종현;김효진
    • 한국재료학회지
    • /
    • 제30권5호
    • /
    • pp.239-245
    • /
    • 2020
  • Synthesizing one-dimensional nanostructures of oxide semiconductors is a promising approach to fabricate highefficiency photoelectrodes for hydrogen production from photoelectrochemical (PEC) water splitting. In this work, vertically aligned zinc oxide (ZnO) nanorod arrays are successfully synthesized on fluorine-doped-tin-oxide (FTO) coated glass substrate via seed-mediated hydrothermal synthesis method with the use of a ZnO nanoparticle seed layer, which is formed by thermally oxidizing a sputtered Zn metal thin film. The structural, optical and PEC properties of the ZnO nanorod arrays synthesized at varying levels of Zn sputtering power are examined to reveal that the optimum ZnO nanorod array can be obtained at a sputtering power of 20 W. The photocurrent density and the optimal photocurrent conversion efficiency obtained for the optimum ZnO nanorod array photoanode are 0.13 mA/㎠ and 0.49 %, respectively, at a potential of 0.85 V vs. RHE. These results provide a promising avenue to fabricating earth-abundant ZnO-based photoanodes for PEC water oxidation using facile hydrothermal synthesis.

전계효과트랜지스터 기반 반도체 소자 응용을 위한 스프레이 공정을 이용한 nc-ZnO/ZnO 박막 제작 및 특성 분석 (Morphological and Electrical Characteristics of nc-ZnO/ZnO Thin Films Fabricated by Spray-pyrolysis for Field-effect Transistor Application)

  • 조준희
    • 반도체디스플레이기술학회지
    • /
    • 제20권4호
    • /
    • pp.1-5
    • /
    • 2021
  • Field-effect transistors based on solution-processed metal oxide semiconductors has attracted huge attention due to their intrinsic characteristics of optical and electrical characteristics with benefits of simple and low-cost process. Especially, spray-pyrolysis has shown excellent device performance which compatible to vacuum-processed Field-effect transistors. However, the high annealing temperature for crystallization of MOS and narrow range of precursors has impeded the progress of the technology. Here, we demonstrated the nc-ZnO/ZnO films performed by spray-pyrolysis with incorporating ZnO nanoparticles into typical ZnO precursor. The films exhibit preserving morphological properties of poly-crystalline ZnO and enhanced electrical characteristics with potential for low-temperature processability. The influence of nanoparticles within the film was also researched for realizing ZnO films providing good quality of performance.

VLS 합성법을 이용한 ZnO 나노구조의 특성 (ZnO Nanostructure Characteristics by VLS Synthesis)

  • 최유리;정일현
    • 공업화학
    • /
    • 제20권6호
    • /
    • pp.617-621
    • /
    • 2009
  • Zinc oxide (ZnO)을 금(Au)과 fluorine-doped tin oxide (FTO) 촉매로 산화실리콘($SiO_2$) 기판에 산화아연입자 20 nm, $20{\mu}m$를 각각 사용하여 기체-액체-고체(VLS) 합성법으로 성장시켰다. 나노로드의 표면특성, 화학조성, 그리고 결정특성을 엑스레이회절(X-ray diffraction (XRD)), 에너지 분산형 X선 분광기(Energy-dispersive X-ray spectroscopy (EDX)), 표면 방출주사현미경(Field-emission scanning electron microscope (FE-SEM))으로 분석하였다. ZnO의 입자 크기 뿐만 아니라 결정형태가 성장에 크게 영향을 미쳤다. ZnO의 모든 나노구조가 6방정계(六方晶系), 단일결정구조를 가지고 있었다. 최적온도는 $1030^{\circ}C$, 입자크기는 20 nm이다. 그러므로 Au 대신 플루오린 첨가 도핑으로 전기음성도가 증가된 FTO 증착에 의해서 생성된 나노로드는 경제성 있는 대체물질로서의 가치가 있을 것으로 사료된다.

Semiconducting ZnO Nanofibers as Gas Sensors and Gas Response Improvement by $SnO_2$ Coating

  • Moon, Jae-Hyun;Park, Jin-Ah;Lee, Su-Jae;Zyung, Tae-Hyoung
    • ETRI Journal
    • /
    • 제31권6호
    • /
    • pp.636-641
    • /
    • 2009
  • ZnO nanofibers were electro-spun from a solution containing poly 4-vinyl phenol and Zn acetate dihydrate. The calcination process of the ZnO/PVP composite nanofibers brought forth a random network of polycrystalline wurtzite ZnO nanofibers of 30 nm to 70 nm in diameter. The electrical properties of the ZnO nanofibers were governed by the grain boundaries. To investigate possible applications of the ZnO nanofibers, their CO and $NO_2$ gas sensing responses are demonstrated. In particular, the $SnO_2$-deposited ZnO nanofibers exhibit a remarkable gas sensing response to $NO_2$ gas as low as 400 ppb. Oxide nanofibers emerge as a new proposition for oxide-based gas sensors.

Influence of Y-Doped on Structural and Optical Properties of ZnO Thin Films Prepared by Sol-Gel Spin-Coating Method

  • Park, Hyunggil;Leem, Jae-Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.336-336
    • /
    • 2013
  • Zinc oxide (ZnO) based transparent oxide semiconductors have been studied due to their high transmittance and electrical conductivity. Pure ZnO have unstable optical and electrical properties at high temperatures but doped ZnO thin films can have stable optical and electrical properties. In this paper, transparent oxide semiconductors of Y-doped ZnO thin films prepared by sol-gel method. The ionic radius of $Y^{3+}$ (0.90 A) is close to that of $Zn^{2+}$ (0.74 A), which makes Y suitable dopant for ZnO thin films. The Sn-doped ZnO thin films were deposited onto quartz substrates with different atomic percentages of dopant which were Y/Zn = 0, 1, 2, 3, 4, and 5 at.%. These thin films were pre-heated at $150^{\circ}C$ for 10 min and then annealed at $500^{\circ}C$ or 1 h. The structural and optical properties of the Y-doped ZnO thin films were investigated using field-emission scanning electronmicroscopy (FE-SEM), X-ray diffraction (XRD), UV-visible spectroscopy, and photoluminescence (PL).

  • PDF

황화납 양자점 기반 단파장 적외선 수광소자의 전기적 특성 향상을 위한 산화아연 나노입자 농도의 중요성 (Importance of Zinc Oxide Nanoparticle Concentration on the Electrical Properties of Lead Sulfide Quantum Dots-Based Shortwave Infrared Photodetectors)

  • 서경호;배진혁
    • 센서학회지
    • /
    • 제31권2호
    • /
    • pp.125-130
    • /
    • 2022
  • We describe the importance of zinc oxide nanoparticle (ZnO NP) concentration in the enhancement of electrical properties in a lead sulfide quantum dot (PbS QD)-based shortwave infrared (SWIR) photodetector. ZnO NPs were synthesized using the sol-gel method. The concentration of the ZnO NPs was controlled as 20, 30 and 40 mg/mL in this study. Note that the ZnO NPs layer is commonly used as an electron transport layer in PbS QDs SWIR photodetectors. The photo-to-dark ratio, which is an important parameter of a photodetector, was intensively examined to evaluate the electrical performance. The 20 mg/mL condition of ZnO NPs exhibited the highest photo-to-dark ratio value of 5 at -1 V, compared with 1.8 and 0.4 for 30 mg/mL and 40 mg/mL, respectively. This resulted because the electron mobility decreased when the concentration of ZnO NPs was higher than the optimized value. Based on our results, the concentration of ZnO NPs was observed to play an important role in the electrical performance of the PbS QDs SWIR photodetector.

Manufacture and characteristic evaluation of Amorphous Indium-Gallium-Zinc-Oxide (IGZO) Thin Film Transistors

  • 성상윤;한언빈;김세윤;조광민;김정주;이준형;허영우
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.166-166
    • /
    • 2010
  • Recently, TFTs based on amorphous oxide semiconductors (AOSs) such as ZnO, InZnO, ZnSnO, GaZnO, TiOx, InGaZnO(IGZO), SnGaZnO, etc. have been attracting a grate deal of attention as potential alternatives to existing TFT technology to meet emerging technological demands where Si-based or organic electronics cannot provide a solution. Since, in 2003, Masuda et al. and Nomura et al. have reported on transparent TFTs using ZnO and IGZO as active layers, respectively, much efforts have been devoted to develop oxide TFTs using aforementioned amorphous oxide semiconductors as their active layers. In this thesis, I report on the performance of thin-film transistors using amorphous indium gallium zinc oxides for an active channel layer at room temperature. $SiO_2$ was employed as the gate dielectric oxide. The amorphous indium gallium zinc oxides were deposited by RF magnetron sputtering. The carrier concentration of amorphous indium gallium zinc oxide was controlled by oxygen pressure in the sputtering ambient. Devices are realized that display a threshold voltage of 1.5V and an on/off ration of > $10^9$ operated as an n-type enhancement mode with saturation mobility with $9.06\;cm^2/V{\cdot}s$. The devices show optical transmittance above 80% in the visible range. In conclusion, the fabrication and characterization of thin-film transistors using amorphous indium gallium zinc oxides for an active channel layer were reported. The operation of the devices was an n-type enhancement mode with good saturation characteristics.

  • PDF

Improvement in the bias stability of zinc oxide thin-film transistors using an $O_2$ plasma-treated silicon nitride insulator

  • 김웅선;문연건;권태석;박종완
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.180-180
    • /
    • 2010
  • Thin film transistors (TFTs) based on oxide semiconductors have emerged as a promising technology, particularly for active-matrix TFT-based backplanes. Currently, an amorphous oxide semiconductor, such as InGaZnO, has been adopted as the channel layer due to its higher electron mobility. However, accurate and repeatable control of this complex material in mass production is not easy. Therefore, simpler polycrystalline materials, such as ZnO and $SnO_2$, remain possible candidates as the channel layer. Inparticular, ZnO-based TFTs have attracted considerable attention, because of their superior properties that include wide bandgap (3.37eV), transparency, and high field effect mobility when compared with conventional amorphous silicon and polycrystalline silicon TFTs. There are some technical challenges to overcome to achieve manufacturability of ZnO-based TFTs. One of the problems, the stability of ZnO-based TFTs, is as yet unsolved since ZnO-based TFTs usually contain defects in the ZnO channel layer and deep level defects in the channel/dielectric interface that cause problems in device operation. The quality of the interface between the channel and dielectric plays a crucial role in transistor performance, and several insulators have been reported that reduce the number of defects in the channel and the interfacial charge trap defects. Additionally, ZnO TFTs using a high quality interface fabricated by a two step atomic layer deposition (ALD) process showed improvement in device performance In this study, we report the fabrication of high performance ZnO TFTs with a $Si_3N_4$ gate insulator treated using plasma. The interface treatment using electron cyclotron resonance (ECR) $O_2$ plasma improves the interface quality by lowering the interface trap density. This process can be easily adapted for industrial applications because the device structure and fabrication process in this paper are compatible with those of a-Si TFTs.

  • PDF

산화아연과 탄소나노튜브의 선형 층상 복합체의 일산화질소 가스 감지특성 (NO Gas Sensing Characteristics of Wire-Like Layered Composites Between Zinc Oxide and Carbon Nanotube)

  • 김옥길;김효진;김도진
    • 한국재료학회지
    • /
    • 제22권5호
    • /
    • pp.237-242
    • /
    • 2012
  • We report on the NO gas sensing properties of Al-doped zinc oxide-carbon nanotube (ZnO-CNT) wire-like layered composites fabricated by coaxially coating Al-doped ZnO thin films on randomly oriented single-walled carbon nanotubes. We were able to wrap thin ZnO layers around the CNTs using the pulsed laser deposition method, forming wire-like nanostructures of ZnO-CNT. Microstructural observations revealed an ultrathin wire-like structure with a diameter of several tens of nm. Gas sensors based on ZnO-CNT wire-like layered composites were found to exhibit a novel sensing capability that originated from the genuine characteristics of the composites. Specifically, it was observed by measured gas sensing characteristics that the gas sensors based on ZnO-CNT layered composites showed a very high sensitivity of above 1,500% for NO gas in dry air at an optimal operating temperature of $200^{\circ}C$; the sensors also showed a low NO gas detection limit at a sub-ppm level in dry air. The enhanced gas sensing properties of the ZnO-CNT wire-like layered composites are ascribed to a catalytic effect of Al elements on the surface reaction and an increase in the effective surface reaction area of the active ZnO layer due to the coating of CNT templates with a higher surface-to-volume ratio structure. These results suggest that ZnO-CNT composites made of ultrathin Al-doped ZnO layers uniformly coated around carbon nanotubes can be promising materials for use in practical high-performance NO gas sensors.

Nano composite System based on ZnO-functionalized Graphene Oxide Nanosheets for Determination of Cabergoline

  • Beitollahi, Hadi;Tajik, Somayeh;Alizadeh, Reza
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권4호
    • /
    • pp.307-313
    • /
    • 2017
  • In this paper we report an electrochemical sensor based on ZnO-functionalized graphene oxide nanocomposite (ZnO-GO) for the sensitive determination of the cabergoline. Cabergoline electrochemical behaviors were investigated by cyclic voltammetry (CV), chronoamperometry (CHA) and differential pulse voltammetry (DPV). The modified electrode shows electrocatalytic activity toward cabergoline oxidation in phosphate buffer solution (PBS) (pH 7.0) with a reduction of the overpotential of about 180 mV and an increase in peak current. The DPV data showed that the obtained anodic peak currents were linearly dependent on the cabergoline concentrations in the range of $1.0-200.0{\mu}M$, with the detection limit of $0.45{\mu}M$. The prepared electrode was successfully applied for the determination of cabergoline in real samples.