• Title/Summary/Keyword: Zn-Sn coating

Search Result 28, Processing Time 0.033 seconds

용액공정을 이용한 AlZnSnO 박막 트랜지스터에서 Al의 효과

  • Han, Gyeong-Ju;Park, Jin-Seong;Jeong, Gwon-Beom
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.167-167
    • /
    • 2012
  • Aluminium-zinc-tin oxide (AZTO) 박막 트랜지스터는 Spin-coating 방법으로 제작되었다. AZTO용액의 용매는 2-Methoxyethanol, 용질은 각각 Aluminium nitride, Zinc acetate dihydrate, Tin chloride가 사용되어 제작되었다. 용액의 안정성을 위해서 미량의 Mono ethyl amine이 첨가되었다. 용액의 Zn:Sn의 몰 비율은 1 : 1로 고정 되었으며 Al의 mole비를 다양하게 늘리면서 실험을 진행하였다. 이렇게 만들어진 AZTO용액은 3,000 rpm으로 30초간 Spin-coating하였으며 이후 Furnace system을 통하여 $500^{\circ}C$의 온도로 1시간 동안 후열처리 공정을 진행하였다. AZTO박막을 활성층으로 제작된 박막 트랜지스터는 Al의 비율이 늘어남에 따라 처음엔 이동도가 증가하였으나 이후 이동도가 낮아지며 소자특성이 나빠지는 것을 보였다. 이러한 현상의 원인을 알아보고자 물리적, 전기적, 광학적 분석을 통해서 Al양의 변화가 박막트랜지스터 구동에 미치는 영향을 해석하였다. 먼저 AZTO용액은 열중량측정/시차열분석법(Thermo Gravimetry/Differential Thermal Analysis)을 이용하여 spin-coating 이후 후 열처리 온도 결정 및 박막의 변화를 관찰하였으며, X-선 분광(X-ray photoelectron spectroscopy)을 이용하여 박막의 조성 및 전자구조의 변화를, 타원분광해석법(Spectroscopic Ellipsometry)분석을 통하여 밴드 갭과 전도대 이하 밴드 갭 내에 존재하는 결함상태변화를 관찰하였다. AZTO 박막 내의 Al양을 조절하는 것은 박막내의 에너지 준위의 변화를 야기하고 그로인해 박막트랜지스터의 특성을 변화킨다는 결과를 도출하였다.

  • PDF

Influence of Y-Doped on Structural and Optical Properties of ZnO Thin Films Prepared by Sol-Gel Spin-Coating Method

  • Park, Hyunggil;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.336-336
    • /
    • 2013
  • Zinc oxide (ZnO) based transparent oxide semiconductors have been studied due to their high transmittance and electrical conductivity. Pure ZnO have unstable optical and electrical properties at high temperatures but doped ZnO thin films can have stable optical and electrical properties. In this paper, transparent oxide semiconductors of Y-doped ZnO thin films prepared by sol-gel method. The ionic radius of $Y^{3+}$ (0.90 A) is close to that of $Zn^{2+}$ (0.74 A), which makes Y suitable dopant for ZnO thin films. The Sn-doped ZnO thin films were deposited onto quartz substrates with different atomic percentages of dopant which were Y/Zn = 0, 1, 2, 3, 4, and 5 at.%. These thin films were pre-heated at $150^{\circ}C$ for 10 min and then annealed at $500^{\circ}C$ or 1 h. The structural and optical properties of the Y-doped ZnO thin films were investigated using field-emission scanning electronmicroscopy (FE-SEM), X-ray diffraction (XRD), UV-visible spectroscopy, and photoluminescence (PL).

  • PDF

MEMS based on nanoparticle gas sensor for air quality system (유해가스 차단시스템용 MEMS 가스 센서)

  • Lee, Eui-Bok;Park, Young-Wook;Hwang, In-Sung;Kim, Sun-Jung;Cha, Jun-Gho;Lee, Ho-Jun;Lee, Jong-Heun;Ju, Byeong-Kwon
    • Journal of IKEEE
    • /
    • v.13 no.4
    • /
    • pp.37-42
    • /
    • 2009
  • In this study, nanopower ZnO and $SnO_2$ as sensing materials were prepared by hydrazine and hydrothermal routes, respectively, and were doped with Pd, Ru catalyst. The CO and $NO_2$ sensors were fabricated by coating of sensing materials on the MEMS-based structure with electrodes and heaters. The 0.1 wt% Pd doped $SnO_2$ sensor and Ru doped ZnO sensor showed the high sensor response to CO 30 ppm and $NO_2$ 1 ppm, respectively. The sensor signal was stable. This can be used for the detection of pollutant gases emitted from gasoline engine.

  • PDF

Corrosion Resistance of Mg-Added Galvannealed Steel Sheets with Nano-Composite Coating

  • Jo, Du-Hwan;Yun, Sang-Man;Paik, Doo-Jin;Kim, Myung-Soo;Hong, Moon-Hi
    • Corrosion Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.57-65
    • /
    • 2020
  • As competition among global automakers intensifies, demand for materials that are better in price and performance is increasing. While steel and plastic materials compete for automotive fuel tanks, plastic materials have advantages such as light weight for automobiles. However, they have high prices. Accordingly, in this paper, four types of Zn-X plated steel sheets, electroplating (X = none, Sn) and galvannealed (X = Fe, Fe-Mg), were manufactured and their applicability as a fuel tank material was evaluated. Nano-composite coating solution with good conductivity was treated on the surface of plated steels using a roll coater and then cured through induction furnace to improve corrosion resistance. Quality characteristics such as corrosion resistance, fuel resistance to diverse gasoline and diesel fuels, and seam weldability were evaluated for the above plated steels. Their properties were compared and analyzed with conventional Zn-Ni electroplating steels. Among the above plated steels, Zn-Fe-Mg galvannealed steels coated with nano-composite coating exhibited better properties than other steels. Detailed experimental results suggest that evenly distributed Mg elements on the coating layer play a key role in the enhanced quality performance.

Characterization of Yttrium Doped Zinc Oxide Thin Films Fabricated by Spin-coating Method (스핀코팅법에 의해 제조되어진 Yttrium이 도핑된 ZnO 막의 특성)

  • Kim Hyun-Ju;Lee Dong-Yun;Song Jae-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.5
    • /
    • pp.457-460
    • /
    • 2006
  • Y doped zinc oxide (YZO) thin films were deposited on F doped $SnO_2$ (FTO) glass substrate by sol-gel method using the spin-coating system. A homogeneous and stable solution was prepared by dissolving acetate in the solution added diethanolamine as sol-gel stabilizer. YZO films were obtained after preheated on the hot-plate for 5minute before each coating; the number of coating was 3 times. After the coating of last step, annealing of YZO films performed at $450^{\circ}C$ for 30 minute. In order to confirming of a ultraviolet ray interruption and down-conversion effects, optical properties of YZO films, transmission spectrum and fluorescent spectrum were used. Also, for understanding the obtained results by experiment, the elestronic state of YZO was calculated using the density functional theory The results obtained by experiment were compared with calculated structure. The detail of electronic structure was obtained by the discrete variational Xa (DV-Xa) method, which is a sort of molecular orbital full potential method. The density of state and energy levels of dopant element were shown and discussed in association with optical properties.

용액 공정 IGZO, ITZO 박막 트랜지스터의 특성 분석

  • Kim, Hyeon-Gi;Choe, Byeong-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.212.2-212.2
    • /
    • 2015
  • 본 연구에서는 용액 공정을 통해 제작한 IGZO, ITZO 박막 트랜지스터의 전기적 특성을 비교, 분석하였다. 실험에 사용된 용액의 농도는 In:Zn:Ga, In:Zn:Sn = 1:1:1로 제작하여 Spin-Coating을 통해 증착하였다. 두 소자 모두 $350^{\circ}C$에서 열처리 공정을 진행한 뒤, 전기적 특성을 측정 및 분석하였다. IGZO 박막 트랜지스터의 경우, Threshold Voltage, S.Swing, Mobility, On/Off ratio가 각각 2.2 V, 0.42, $0.18cm^2/Vs$, $1.5{\times}$10^5로 측정되었으나 ITZO 박막 트랜지스터의 경우, -6.92 V, 0.91, $0.43cm^2/Vs$, $2.1{\times}$10^5 로 IGZO보다 Negative한 방향으로 이동하였다. 이는 Sn이 Ga에 비해 Band gap이 넓고, 산소와의 결합력이 작기 때문에, ITZO 박막 트랜지스터가 Oxygen vacancy형성을 통한 Carrier density가 높은 것으로 판단된다.

  • PDF

Lower Temperature Soldering of Capacitor Using Sn-Bi Coated $Sn-3.5\%Ag$ Solder (Sn-Bi도금 $Sn-3.5\%Ag$ 솔더를 이용한 Capacitor의 저온 솔더링)

  • Kim Mi-Jin;Cho Sun-Yun;Kim Sook-Hwan;Jung Jae-Pil
    • Journal of Welding and Joining
    • /
    • v.23 no.3
    • /
    • pp.61-67
    • /
    • 2005
  • Since lead (Pb)-free solders for electronics have higher melting points than that of eutectic Sn-Pb solder, they need higher soldering temperatures. In order to decrease the soldering temperature we tried to coat Sn-Bi layer on $Sn-3.5\%Ag$ solder by electroplating, which applies the mechanism of transient liquid phase bonding to soldering. During heating Bi will diffuse into the $Sn-3.5\%Ag$ solder and this results in decreasing soldering temperature. As bonding samples, the 1608 capacitor electroplated with Sn, and PCB, its surface was finished with electroless-plated Ni/Au, were selected. The $Sn-95.7\%Bi$ coated Sn-3.5Ag was supplied as a solder between the capacitor and PCB land. The samples were reflowed at $220^{\circ}C$, which was lower than that of normal reflow temperature, $240\~250^{\circ}C$, for the Pb-free. As experimental result, the joint of $Sn-95.7\%Bi$ coated Sn-3.5Ag showed high shear strength. In the as-reflowed state, the shear strength of the coated solder showed 58.8N, whereas those of commercial ones were 37.2N (Sn-37Pb), 31.4N (Sn-3Ag-0.5Cu), and 40.2N (Sn-8Zn-3Bi). After thermal shock of 1000 cycles between $-40^{\circ}C$ and $+125^{\circ}C$, shear strength of the coated solder showed 56.8N, whereas the previous commercial solders were in the range of 32.3N and 45.1N. As the microstructures, in the solder $Ag_3Sn$ intermetallic compound (IMC), and along the bonded interface $Ni_3Sn_4$ IMC were observed.

Suppression of Charge Recombination Rate in Nanocrystalline SnO2 by Thin Coatings of Divalent Oxides in Dye-Sensitized Solar Cells

  • Lee, Chae-Hyeon;Lee, Gi-Won;Kang, Wee-Kyung;Lee, Doh-Kwon;Ko, Min-Jae;Kim, Kyoung-Kon;Park, Nam-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3093-3098
    • /
    • 2010
  • The core-shell $SnO_2$@AO (A=Ni, Cu, Zn and Mg) films were prepared and the effects of coatings on photovoltaic properties were investigated. Studies on X-ray photoelectron spectroscopy, energy dispersive X-ray analysis and transmission electron microscopy showed the formation of divalent oxides on the surface of $SnO_2$ nanoparticles. It was commonly observed that all the dye-sensitized core-shell films exhibited higher photovoltage than the bare $SnO_2$ film. Transient photovoltage measurements confirmed that the improved photovoltages were related to the decreased time constants for electron recombination.

Characterization and Corrosion Behaviour of Zn-Sn Binary Alloy Coatings in 0.5 M H2SO4 Solution

  • Fatoba, O.S.;Popoola, A.P.I.;Fedotova, T.
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.65-74
    • /
    • 2015
  • This work examines the characterization and corrosion behaviour of laser alloyed UNSG10150 steel with three different premixed composition Zn-Sn binary powders using a 4.4 kW continuous wave (CW) Rofin Sinar Nd:YAG laser processing system. The steel alloyed samples were cut to corrosion coupons, immersed in sulphuric acid (0.5 M H2SO4) solution at 30℃ using electrochemical technique and investigated for its corrosion behaviour. The morphologies and microstructures of the developed coated and uncoated samples were characterized by Optic Nikon Optical microscope (OPM) and scanning electron microscope (SEM/EDS). Moreover, X-ray diffractometer (XRD) was used to identify the phases present. An enhancement of 2.7-times the hardness of the steel substrate was achieved in sample A1 which may be attributed to the fine microstructure, dislocations and the high degree of saturation of solid solution brought by the high scanning speed. At scanning speed of 0.8 m/min, sample A1 exhibited the highest polarization resistance Rp (1081678 Ωcm2 ), lowest corrosion current density icorr (4.81×10−8A/cm2 ), and lowest corrosion rate Cr (0.0005 mm/year) in 0.5 M H2SO4. The polarization resistance Rp (1081678 Ωcm2 ) is 67,813-times the polarization of the UNSG10150 substrate and 99.9972% reduction in the corrosion rate.

Effect of Preparation Condition of Precursor Thin Films on the Properties of CZTS Solar Cells

  • Seong, Si-Jun;Park, Si-Nae;Kim, Dae-Hwan;Gang, Jin-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.318.1-318.1
    • /
    • 2013
  • Nowadays Cu2ZnSnS4 (CZTS) solar cell is attracting a lot of attention as a strong alternative to CIGS solar cell due to nontoxic and inexpensive constituent elements of CZTS. From various processes for the fabrication of CZTS solar cell, solution-based deposition of CZTS thin films is well-known non-vacuum process and many researchers are focusing on this method because of large-area deposition, high-throughput, and efficient material usage. Typically the solution-based process consists of two steps, coating of precursor solution and annealing of the precursor thin films. Unlike vacuum-based deposition, precursor solution contains unnecessary elements except Cu, Zn, Sn, and S in order to form high quality precursor thin films, and thus the precise control of precursor thin film preparation is essential for achieving high efficient CZTS solar cells. In this work, we have investigated the effect of preparation condition of CZTS precursor thin films on the performance of CZTS solar cells. The composition of CZTS precursor solution was controlled for obtaining optimized chemical composition of CZTS absorber layers for high-efficiency solar cells. Pre-annealing process of the CZTS precursor thin films was also investigated to confirm the effect of thermal treatment on chemical composition and carbon residues of CZTS absorber layers. The change of the morphology of CZTS precursor thin film by the preparation condition was also observed.

  • PDF