• Title/Summary/Keyword: Zn vacancy

Search Result 103, Processing Time 0.031 seconds

A Study on an Oxygen Vacancy and Conductivity of Oxide Thin Films Deposited by RF Magnetron Sputtering and Annealed in a Vacuum

  • Oh, Teresa
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.1
    • /
    • pp.21-24
    • /
    • 2017
  • Usually, the oxygen vacancy is an important factor in an oxide semiconductor device because the conductivity is related to the oxygen vacancy, which is formed at the interface between oxide semiconductors and electrodes with an annealing processes. ZTO is made by mixing n-type ZnO and p-type $SnO_2$. Zink tin oxide (ZTO), zink oxide (ZnO) and tin oxide ($SnO_2$) thin films deposited by RF magnetron sputtering and annealed, to generate the oxygen vacancy, were analyzed by XPS spectra. The contents of oxygen vacancy were the highest in ZTO annealed at $150^{\circ}C$, ZnO annealed at $200^{\circ}C$ and $SnO_2$ annealed at $100^{\circ}C$. The current was also increased with increasing the oxygen vacancy ions. The highest content of ZTO oxygen vacancies was obtained when annealed at 150. This is the middle level in compared with those of ZnO annealed at $200^{\circ}C$ and $SnO_2$ annealed at $100^{\circ}C$. The electrical properties of ZTO followed those of $SnO_2$, which acts a an enhancer in the oxide semiconductor.

A Study on Properties of Ga-doped ZnO Thin Films for Annealing Temperature Change by RF Sputtering Method (RF Sputtering으로 증착한 어닐링 온도 변화에 따른 Ga-doped ZnO 박막 특성 연구)

  • Han, Seung Ik;Kim, Hong Bae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.2
    • /
    • pp.11-15
    • /
    • 2016
  • This paper, Ga-doped ZnO (GZO) thin films which were deposited on Corning glass substrate using an magnetron sputtering deposition technology and then the post deposition annealing process was conducted for 30 minutes at different temperature of 100, 200, 300, and $400^{\circ}C$, respectively. So as to investigate the properties for the relevant the Concentration and Oxygen Vacancy with Annealing temperature of Ga-doped ZnO thin films by RF Sputtering method. The Carrier concentration is enhanced as annealing temperature decreases, and also the oxygen vacancy concentration is enhanced as annealing temperature decreased. Oxygen vacancy will decrease along with Carrier concentration. This change in Carrier concentration is related to changes in oxygen vacancy concentration. The figure of merit obtained in this study means that Ga-doped ZnO films which annealed at $400^{\circ}C$ have the lowest Carrier concentration and Oxygen vacancy, which have the highest optoelectrical performance that it could be used as a transparent electrode.

Effective Oxygen-Defect Passivation in ZnO Thin Films Prepared by Atomic Layer Deposition Using Hydrogen Peroxide

  • Wang, Yue;Kang, Kyung-Mun;Kim, Minjae;Park, Hyung-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.3
    • /
    • pp.302-307
    • /
    • 2019
  • The intrinsic oxygen-vacancy defects in ZnO have prevented the preparation of p-type ZnO with high carrier concentration. Therefore, in this work, the effect of the concentration of H2O2 (used as an oxygen source) on the oxygen-vacancy concentration in ZnO prepared by atomic layer deposition was investigated. The results indicated that the oxygen-vacancy concentration in the ZnO film decreased by the oxygen-rich growth conditions when using H2O2 as the oxygen precursor instead of a conventional oxygen source such as H2O. The suppression of oxygen vacancies decreased the carrier concentration and increased the resistivity. Moreover, the growth orientation changed to the (002) plane, from the combined (100) and (002) planes, with the increase in H2O2 concentration. The passivation of oxygen-vacancy defects in ZnO can contribute to the preparation of p-type ZnO.

High Resolution TEM Lattice Images of Modulated Structure Due to Zn Vacancy Ordering in $Ba(Zn_{1/3}Ta_{2/3})O_3$ Ceramics ($Ba(Zn_{1/3}Ta_{2/3})O_3$ 세라믹에서 Zn vacancy 규칙화에 의한 변조구조의 고분해능 TEM 영상관찰)

  • Lee, Hwack-Joo;Ryu, Hyun;Choi, Seong-Jin;Nahm, Sahn;Byun, Jae-Dong
    • Applied Microscopy
    • /
    • v.28 no.1
    • /
    • pp.121-126
    • /
    • 1998
  • Detailed studies of high resolution TEM inages on the modulated structure caused by Zn vacancy ordering along [110] direction in BZT sintered at $1400^{\circ}C$ for 90 hours had revealed that the images which had hexagonal patterns were similar to those obtained from the structure which had no modulation, These images had appeared over the wide ranges from -30 nm to -42 nm in defocus values and from 2 nm to 20 nm in thickness. The computer simulated images showed that the modulation due to Zn vacancy ordering had made a small change in contrast in the interior of hexagonal pattern, which was very difficult to differenciate in experiments. The image which demonstrated the modulated structure very well was the one which obtained at -52 nm in defocus value and 16 nm in thickness.

  • PDF

Ab initio Study for Electronic Property and Ferromagnetism of (Cu, N, or F)-codoped ZnO

  • Kang, Byung-Sub;Chae, Kwang-Pyo
    • Journal of Magnetics
    • /
    • v.17 no.3
    • /
    • pp.163-167
    • /
    • 2012
  • The effects on the ferromagnetism of the O or Zn defect in Cu-doped ZnO with the concentration of 2.77-8.33% have been investigated by the first-principles calculations. The Cu doping in ZnO was calculated to be a kind of p-type ferromagnetic half-metals. When the Zn vacancy exists in Cu-doped ZnO, the Cu magnetic moment increases, while for the O vacancy it is reduced. It is noticeable that the ferromagnetic state was originated from the hybridized O(2p)-Cu(3d)-O(2p) chain formed through the p-d coupling. The carrier-mediated ferromagnetism by nitrogen or fluorine does not depend on their concentration.

Zinc Vacancy Ordering in BaTEX>$(Zn_1/3Ta2/3)O_3$Ceramics

  • Park, Seong-Jin;Sahn Nahm;Kim, Myong-Ho;Byun, Jae-Dong
    • The Korean Journal of Ceramics
    • /
    • v.2 no.4
    • /
    • pp.242-245
    • /
    • 1996
  • The microstructure of $Ba (Zn_{1/3}Ta_{2/3})O_3$ (BZT) was investigated using X-ray diffractometry(XRD) and transmission electron microscopy (TEM). $Ba_{0.5}TaO_3$ and $Ba_3TaO_{5.5}$ (BT) phasses were observed on the surface of the sintered specimen by XRD. Furthermore, a new type of ordering along the [110] direction was found in sintered specimen by the XRD and TEM analysis. The wavelength of ordering was 0.9 nm which is three times larger than the interplanar distance of (110) plane and new type of ordering is considered to be a result of Zn vacancy ordering. The creation of Zn vacancies and formation of BT phases are attributed to the evaporation of volatile ZnO. A new mechanism for ZnO loss is suggested. In this mechanism, only Zn vacancies are created only when the amount of ZnO loss is small and as the amount of ZnO loss increases, BT phases are formed at the same time. A new unit cell of ordered structure is suggested as the superlattics containing three BZT unit cells.

  • PDF

A Study on Luminescent Characteristics according to Crystal Defect of ZnS Powder Phosphors (ZnS 형광체 분말의 결정결합에 따른 발광특성연구)

  • 박용규;성현호;조황신;양해석;이종찬;박대희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.10
    • /
    • pp.876-882
    • /
    • 2000
  • ZnS phosphors were sintered at vacuum atmosphere, Sintered under the temperature of 950$\^{C}$, ZnS phosphors were grown into the sphalerite structure and two emission peaks were observed at the positions of 460nm and 528nm of the emission spectra. Sintered over the temperature of 1050$\^{C}$, there were simultaneously the sphalerite and wurtize structure in the ZnS phosphors and three emission peaks were observed at the positions of 440nm and 515nm of emission spectra. The emission peaks of 460nm obsrved under the sphalerite structure and 440nm observed under the wurtize structure were due to the vacancy of Zn formed in the ZnS phosphors. The emission peaks of 528nm observed under the sphalerite structure and 515nm observed under the wurtize structure wre caused by the radiative transitions from the level of the vacancy of S formed in the ZnS phosphors to the valance band.

  • PDF

Annealing effects of ZnSe epilayer grown by hot-well epiraxy method (Hot - wall epitaxy 방법으로 성장한 ZnSe 박막의 열처리 효과)

  • 정태수;김택성
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.2
    • /
    • pp.96-99
    • /
    • 2000
  • The photoluminescened experiments at temperature of 10K were carride out for ZnSe epilayers grown by hot-wall epitaxy. The upper and lower polariton peaks of the neutral dound exciton $I_2$($D^{\circ}$,X) for as-grown epilayer have been dominantly observed.For the heat-treatment under Se ambient,the origin of $I_2$ emission is confirmed to be related to Se-vacancy.The extra neutral acceptor bound exciton $I_1$$^d$ is also observed.The ZnSe epilayer shows the self-compensation effect and it is hard to be converted into p-type ZnSe epilayer.However,the photoluminescence spectrum of the annealed sample in Se ambient shows the intense $I_1$$^d$ emission.This indicates that in the annealed ZnSe epilayer,there are many acceptor levels due to the opical p-type converstion. The binding energy of acceptor-impurity is ecaluated to the value of 268meV and the self-activated emission is disappeared by thermal annealing under Se ambient,which indicates the association with Se-vacancy.

  • PDF

Point-defect study from low-temperature photoluminescence of ZnSe layers through the post-annealing in various ambient

  • Lee, Sang-Youl;Hong, Kwang-Joon;Kim, Hae-Jeong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.378-378
    • /
    • 2010
  • The ZnSe epilayers were grown on the GaAs substrate by hot wall epitaxy. After the ZnSe epilayers treated in the vacuum-, Zn-, and Se-atmosphere, respectively, the defects of the epilayer were investigated by means of the low, temperature photoluminescence measurement. The dominant peaks at 2.7988 eV and 2.7937 eV obtained from the PL spectrum of the as-grown ZnSe epilayer were found to be consistent with the upper and the lower polariton peak of the exciton, $I_2$ ($D^{\circ}$, X), bounded to the neutral donor associated with the Se-vacancy. This donor-impurity binding energy was calculated to be 25.3 meV. The exciton peak, $I_l^d$, at 2.7812 eV was confirmed to be bound to the neutral acceptor corresponded with the Zn-vacancy.

  • PDF

Al 도핑 및 열처리 온도에 따른 용액 공정 기반 AlZnSnO TFT의 특성 향상 연구

  • Kim, Hyeon-U;Choe, Byeong-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.216.1-216.1
    • /
    • 2015
  • 본 연구에서는 용액 공정 기반 AZTO (Aluminum-Zinc-Tin Oxide, AlZnSnO) 박막 트랜지스터를 제작하여 Al (Aluminum) 도핑과 열처리 온도의 가변을 통한 특성 향상을 확인하였다. ZTO 용액의 Zn:Sn 비율(4:7)을 고정하고 Al 도핑(0~8.3%)과 열처리 온도($350{\sim}550^{\circ}C$)를 가변하였다. 실험 결과 Al 도핑이 증가할수록 드레인 전류는 감소하고 문턱 전압이 양의 방향으로 이동하면서 포화 이동도와 아문턱 기울기가 감소하였다. 열처리 온도가 증가할 때는 드레인 전류가 증가하고 문턱 전압은 음의 방향으로 이동하며 이동도와 아문턱 기울기가 증가하였다. Al 도핑은 강한 금속-산소 결합에 의해 oxygen vacancy와 전자 농도가 감소하게 하여 드레인 전류, 이동도, 아문턱 기울기의 감소와 양의 방향 문턱 전압 이동을 야기한다. 열처리 온도가 높아지면 반도체 층의 분자 구조가 더 밀집되고 oxygen vacancy 가 증가하며, 이는 전자 농도의 증가로 이어져 Al 도핑의 효과와 반대의 경향을 보인다. 실험 결과를 통해 Al:Zn:Sn=0.5:4:7의 비율과 $350^{\circ}C$ 열처리 조건에서 문턱 전압과 이동도, 아문턱 기울기, 전류 온오프 비($I_{on}/I_{off}$)가 각각 3.54V, $0.16cm^2/Vs$, 0.43 V/dec, $8.1{\times}10^5$으로 우수한 특성을 확인하였다.

  • PDF