Browse > Article
http://dx.doi.org/10.4313/TEEM.2017.18.1.21

A Study on an Oxygen Vacancy and Conductivity of Oxide Thin Films Deposited by RF Magnetron Sputtering and Annealed in a Vacuum  

Oh, Teresa (Department of Semiconductor Engineering, Cheongju University)
Publication Information
Transactions on Electrical and Electronic Materials / v.18, no.1, 2017 , pp. 21-24 More about this Journal
Abstract
Usually, the oxygen vacancy is an important factor in an oxide semiconductor device because the conductivity is related to the oxygen vacancy, which is formed at the interface between oxide semiconductors and electrodes with an annealing processes. ZTO is made by mixing n-type ZnO and p-type $SnO_2$. Zink tin oxide (ZTO), zink oxide (ZnO) and tin oxide ($SnO_2$) thin films deposited by RF magnetron sputtering and annealed, to generate the oxygen vacancy, were analyzed by XPS spectra. The contents of oxygen vacancy were the highest in ZTO annealed at $150^{\circ}C$, ZnO annealed at $200^{\circ}C$ and $SnO_2$ annealed at $100^{\circ}C$. The current was also increased with increasing the oxygen vacancy ions. The highest content of ZTO oxygen vacancies was obtained when annealed at 150. This is the middle level in compared with those of ZnO annealed at $200^{\circ}C$ and $SnO_2$ annealed at $100^{\circ}C$. The electrical properties of ZTO followed those of $SnO_2$, which acts a an enhancer in the oxide semiconductor.
Keywords
ZnO; $SnO_2$; ZTO; XPS; Oxygen vacancy; O 1s spectra;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 T. Oh, Mater. Res. Bull., 77, 1, (2016). [DOI: http://10.1016/j.materresbull.2015.11.038]   DOI
2 O. Mitrofanov and M. Mantra, J. Appl. Phys. 95, 6414 (2004). [DOI: http://dx.doi.org/10.1063/1.1719264]   DOI
3 S. Y. Lee, Trans. Electr. Electron. Mater., 17, 143 (2016). [DOI: http://dx.doi.org/10.4313/TEEM.2016.17.3.143]   DOI
4 T. Hirao, M. Furuta, T. Hiramatsu, T. Matsuda, C. Li, H. Furuta, H. Hokari, M. Yoshida, H. Ishii, and M. Kakegawa, IEEE Trans. Electron Dev., 55, 3136 (2008). [DOI: http://dx.doi.org/10.1109/TED.2008.2003330]   DOI
5 J. Maserjian and N. Zamani, Appl. Phys. Lett. 53, 559 (1982). [DOI: http://dx.doi.org/10.1063/1.329919]
6 L. Plantier et al., Microelectron. Eng., 83, 2407 (2006). [DOI: http://10.1088/1009-0630/14/7/12]   DOI
7 V. H. Nguyen and H. B. Gu, Trans. Electr. Electron. Mater., 17, 139 (2016). [DOI: http://dx.doi.org/10.4313/TEEM.2016.17.3.139]   DOI
8 S. H. Lee, K. T. Park, and Y. G. Son, J. Kor. Mater. Res., 12, 240 (2002). [DOI: http://10.3740/MRSK.2002.12.4.240]   DOI
9 L. S. Vlasenko and G. D. Watkins, Phys. Lett. B, 71, 125210 (2005). [DOI: http://dx.doi.org/10.1103/PhysRevB.71.125210]
10 O. Mitrofanov and M. Manfra, J. Appl. Phys., 95, 6414 (2004). [DOI: http://dx.doi.org/10.1063/1.1719264]   DOI
11 T. Oh and C. H. Kim, IEEE Trans. Plasma Science, 38, 1598 (2010). [DOI: http://dx.doi.org/10.1109/TPS.2010.2049665]   DOI
12 J. Raja, K. Jang, C.P.T. Nguyen, J. Yi, N. Balaji, S. Q. Hussain, and S. Chatterjee, Trans. Electr. Electron. Mater., 16, 234 (2015). [DOI: http://dx.doi.org/10.4313/TEEM.2015.16.5.234]   DOI
13 K. C. Park and T. Y. Ma, J. Korean Inst. Electr. Mater. Eng., 26, 373 (2013). [DOI: http://10.4313/JKEM.2013.26.5.373]
14 T. Y. Ma, J. Korean Inst. Electr. Mater. Eng., 25, 304 (2012). [DOI: http://10.4313/JKEM.2012.25.4.304]
15 T. Oh, Trans. Electr. Electron. Mater., 17, 104 (2016). [DOI: http://dx.doi.org/10.4313/TEEM.2016.17.2.104]   DOI
16 T. Oh, J. Nanosci. Nanotechnol., 14, 9047 (2014). [DOI: http://10.1166/jnn.2014.10071]   DOI
17 H. Kim, Trans. Electr. Electron. Mater., 16, 285 (2015). [DOI: http://dx.doi.org/10.4313/TEEM.2015.16.5.285E]   DOI
18 T. Oh, EML, 11, 853 (2015). [DOI: http://10.1007/s13391-015-4505-3]
19 T. Oh and C. K. Choi, J. Korean Phys. Soc., 56, 1150 (2010). [DOI: http://10.3938/jkps.56.1150]   DOI
20 T. Oh, Transactions of the Materials Research Society of Japan, 39, 475 (2014). [DOI: http://doi.org/10.14723/tmrsj.39.475]   DOI