• Title/Summary/Keyword: Zn sheet

Search Result 227, Processing Time 0.022 seconds

The Weldability of Magnesium Alloys for Car Industry

  • Lee, Mok-Young;Chang, Woong-Seong;Yoon, Byung-Hyun
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.370-376
    • /
    • 2005
  • Magnesium alloys are becoming important material for light weight car body, due to their low specific density but high specific strength. However they have a poor weldability, caused high oxidization tendency and low vapor temperature. In this study, the welding performance of magnesium alloys was investigated for automobile application. The materials were rolled magnesium alloy sheet contains Al and Zn such as AZ3l , AZ6l and AZ9l. Three types of welding process were studied, that were GTAW, Laser beam welding and FSW. To evaluate the weldability, we examined the appearance of welding bead. Also we checked bead shape and internal defects such as crack and porosity on cross section of welding bead. The mechanical property was measured for welded specimen by tensile test. For determination of the strength change by welding process, the hardness profile across the welding center was measured. For the results, the tensile properties of welded specimen were decreased obviously on all welding process. For the fusion welding process such as GTAW and laser beam welding, the surface of the welding bead was covered with oxidized magnesium dust but it was removed by simple cleaning work as wipe-out with tissue. Also under cut, that caused vaporization of base metal was occurred. for the friction stir welding, there was no oxidation, under-cut or internal defects. However it had poor weld performance, the reason was cleavage fracture occurred at plastic deformation zone. For welding of magnesium alloy, the laser beam welding process was recommended.

  • PDF

High Speed LTCC 기판 소재의 LTCC 공정 평가

  • Hong, Seung-Hyeok;Sin, Hyo-Sun;Hong, Yeon-U;Yeo, Dong-Hun;Kim, Jong-Hui
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.304-304
    • /
    • 2008
  • 최근 이동통신의 사업의 발달로 인하여 제품의 고속신호 전달에 대한 관심이 부각되고 있다. 이로 인해 고집적 LTCC 모듈로 제작이 가능하고 고속신호 전달이 용이한 저유전율과 낮은 loss특성을 요구하는 소재 개발의 지속적인 연구를 필요로 한다. 지금까지의 ceramic/glass composite에서 주로 사용된 ceramic filler는 $Al_2O_3$로 낮은 유전율을 구현하는데 한계가 있었다. Cordierite는 낮은 유전율(${\varepsilon}r$ < 4)을 나타내는 filler로서 저유전율 기판소재로 사용될 가능성이 높지만 아직까지 보고된 결과들이 미흡한 실정이다. 선행 연구에서 cordierite filler와 $SiO_2-B_2O_3-Al_2O_3$-RO (R Zn, Sr, Ba, Ca)계의 glass를 혼합하여 LTCC 용 기판소재로서의 가능성을 확인한 결과 5.0~5.5 의 낮은 유전율과 1,000~1,500의 Q를 나타내는 것을 확인 하였다. 하지만 sheet로 제작 시 $B_2O_3$ 계로 인해 볼밀 공정에서 슬러리를 응집시켜 점도를 증가(gelation)시키는 현상이 발생하였다. 이를 개선하기 위한 glass 조성의 $B_2O_3$ 함량을 5%줄여 만든 glass를 이용해 미세구조, 유전율과 Q 그리고 강도를 측정하였다.

  • PDF

Electrical, Optical and Structural Properties of Indium Zinc Oxide Top Cathode Grown by Box Cathode Sputtering for Top-emitting OLEDs (박스 캐소드 스퍼터로 성장시킨 전면 발광 OLED용 상부 InZnO 캐소드 박막의 전기적, 광학적, 구조적 특성 연구)

  • Bae Jung-Hyeok;Moon Jong-Min;Kim Han-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.5
    • /
    • pp.442-449
    • /
    • 2006
  • Electrical, optical, and structural properties of indium zinc oxide (IZO) films grown by a box cathode sputtering (BCS) were investigated as a function of oxygen flow ratio. A sheet resistance of $42.6{\Omega}/{\Box}$, average transmittance above 88% in visible range, and root mean spare roughness of $2.7{\AA}$ were obtained even in the IZO layers grown at room temperature. In addition, it is shown that electrical characteristics of the top-emitting organic light emitting diodes (TOLEDs) with the BCS grown-IZO top cathode layer is better than that of TOLEDs with DC sputter grown IZO top cathode, due to absence of plasma damage effect. Furthermore the effects of oxygen flow ratio in IZO films are investigated, based on x-ray photoelectron spectroscopy (XPS), ultra violet/visible (UV/VIS) spectro-meter, scanning electron microscopy (SEM), and atomic force microscopy (AFM) analysis results.

A comprehensive study of spin coating as a thin film deposition technique and spin coating equipment

  • Tyona, M.D.
    • Advances in materials Research
    • /
    • v.2 no.4
    • /
    • pp.181-193
    • /
    • 2013
  • Description and theory of spin coating technique has been elaborately outlined and a spin coating machine designed and fabricated using affordable components. The system was easily built with interdisciplinary knowledge of mechanics, fluid mechanics and electronics. This equipment employs majorly three basic components and two circuit units in its operation. These include a high speed dc motor, a proximity sensor mounted at a distance of about 15 mm from a reflective metal attached to the spindle of the motor to detect every passage of the reflective metal at its front and generate pulses. The pulses are transmitted to a micro-controller which process them into rotational speed (revolution per minute) and displays it on a lead crystal display (LCD) which is also a component of the micro-controller. The circuit units are a dc power supply unit and a PWM motor speed controlling unit. The various components and circuit units of this equipment are housed in a metal casing made of an 18 gauge black metal sheet designed with a total area of 1, $529.2cm^2$. To illustrate the use of the spin-coating system, ZnO sol-gel films were prepared and characterized using SEM, XRD, UV-vis, FT-IR and RBS and the result agrees well with that obtained from standard equipment and a speed of up to 9000 RPM has been achieved.

Bio-Piezoelectric Generator with Silk Fibroin Films Prepared by Dip-Coating Method (딥코팅에 의한 실크 피브로인막으로 제조한 바이오 압전발전기)

  • Kim, Min-Soo;Park, Sang-Shik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.487-494
    • /
    • 2021
  • Piezoelectric generators use direct piezoelectric effects that convert mechanical energy into electrical energy. Many studies were attempted to fabricate piezoelectric generators using piezoelectrics such as ZnO, PZT, PVDF. However, these various inorganic/organic piezoelectric materials are not suitable for bio-implantable devices due to problems such as brittleness, toxicity, bio-incompatibility, bio-degradation. Thus, in this paper, piezoelectric generators were prepared using a silk fibroin film which is bio-compatible by dip-coating method. The silk fibroin films are a mixed state of silk I and silk II having stable β-sheet type structures and shows the d33 value of 8~10 pC/N. There was a difference in output voltages according to the thickness. The silk fibroin generators, coated 10 times and 20 times, revealed the power density of 16.07 μW/cm2 and 35.31 μW/cm2 using pushing tester, respectively. The silk fibroin generators are sensitive to various pressure levels, which may arise from body motions such as finger tapping, foot pressing, wrist shaking, etc. The silk fibroin piezoelectric generators with bio-compatibility shows the applicability as a low-power implantable piezoelectric generator, healthcare monitoring service, and biotherapy devices.

Crystallization Behavior and Electrical Properties of IZTO Thin Films Fabricated by Ion-Beam Sputtering (이온빔 스퍼터링으로 증착한 IZTO 박막의 결정화 거동과 전기적 특성 분석)

  • Park, Ji Woon;Bak, Yang Gyu;Lee, Hee Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.2
    • /
    • pp.99-104
    • /
    • 2021
  • Ion-beam sputtering (IBS) was used to deposit semiconducting IZTO (indium zinc tin oxide) thin films onto heavily-doped Si substrates using a sintered ceramic target with the nominal composition In0.4Zn0.5Sn0.1O1.5, which could work as a channel layer for oxide TFT (oxide thin film transistor) devices. The crystallization behavior and electrical properties were examined for the films in terms of deposition parameters, i.e. target tilt angle and substrate temperature during deposition. The thickness uniformity of the films were examined using a stylus profilometer. The observed difference in electrical properties was not related to the degree of crystallization but to the deposition temperature which affected charge carrier concentration (n), electrical resistivity (ρ), sheet resistance (Rs), and Hall mobility (μH) values of the films.

Physical Treatment for Recycling Commercialization of Spent Household Batteries (가정용(家庭用) 폐건전지(廢乾電池)의 재활용(再活用) 상용화(商用化)를 위한 물리적(物理的) 처리(處理))

  • Park, Jin-Tae;Kang, Jin-Gu;Sohn, Jeong-Soo;Yang, Dong-Hyo;Shin, Shun-Myung
    • Resources Recycling
    • /
    • v.15 no.6 s.74
    • /
    • pp.48-55
    • /
    • 2006
  • This study was carried out for establishing the physical recycling technique for commercializing process on household batteries. The procedure involves shape separator, crushing, magnetic separation, classification and eddy current separation in sequence. The separation capacity was 400-600 unit cell/hr with shape separation system. The impurities such as manganese and zinc in the magnetic product were below 0.1% respectively, the concentration of iron was above 99% in spent carbon zinc battery. Also non-magnetic products are composed of 22-30% En, 16-22% Mn, 1-3% Fe in the case oi spent zinc carbon battery. The amounts of other components such as carbon rod, plastics and separator were about 37-50%. From the eddy current separation of nonferrous products, the plate-type zinc components were separated up to 96% with 2,250-2,750 meter/min of the conveyor speed.

K-Ar whole Rock Ages of the Rhyolitic Rocks at Punggog in the Jangseong Sheet, Taebaegsan Area (태백산지역(太白山地域) 장성도복내(長省圖福內) 풍곡(豊谷)에 분포(分布)되어 있는 유문암질암(流紋岩質岩)의 K-Ar 전암연령(全岩年齡))

  • Jin, Myung-Shik;Kim, Sahng-Yup;Seo, Hyo-Joon;Kim, Seong-Jae
    • Economic and Environmental Geology
    • /
    • v.22 no.1
    • /
    • pp.17-20
    • /
    • 1989
  • Two rhyolitic rocks were taken at punggog of the Jangseong sheet in the Taebaegsan mineralized area and isotopically dated by K-Ar whole rock method. One is a rhyolite which gives $62.69{\pm}1.15Ma$ and the other is a rhyolitic tuff which gives $51.67{\pm}6.64Ma$, respectively. Generally K-Ar whole rock ages of the volcanic rocks can be assumed to be the formation age of them, if there is no geological criterion of secondary effects. But the two rhyolitic rocks were slightly hydrothermally altered and the age the rhyolitic tuff is a little younger than that of the rhyolite. However, there is no geological criterion to show any big hiatus between them in field, yet. Therefore, the age data would be interpreted, as that the rhyolitic rock mass has been probably extruded at about 60 Ma, a little older than 60 Ma, in the area. The ages of them probably appear to be secondary ages after the alteration. This fact well coincides with the K-Ar whole rock age of quartz-porphyry ($57.25{\pm}0.89Ma$) distributed near the 1st Yeonhwa Pb-Zn mine (Park et al., personal comm.), because the quartz-porphyry look to be a product of hydrothermal alteration of the volcanic rock.

  • PDF

Thickness Dependence of Electrical and Optical Properties of ITZO (In-Sn-Zn-O) Thin Films (ITZO (In-Sn-Zn-O) 박막의 전기적 및 광학적 특성의 두께 의존성)

  • Kang, Seong-Jun;Joung, Yang-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1285-1290
    • /
    • 2017
  • We prepared ITZO thin films with various thicknesses on glass substrates using RF magnetron sputtering and investigated electrical, optical and structural properties of the thin film. Sheet resistance of ITZO thin film showed a decreasing trend on the increase of film thickness, but its resistivity exhibited a substantially constant value of $5.06{\pm}1.23{\times}10^{-4}{\Omega}-cm$. Transmittance of ITZO thin film moved to the long-wavelength with the increase of film thickness. Figure of merit in a visible light and an absorption area of P3HT:PCBM organic active layer of the 360nm-thick IZTO thin film was $8.21{\times}10^{-3}{\Omega}^{-1}$ and $9.29{\times}10^{-3}{\Omega}^{-1}$, respectively. Through XRD and AFM measurements, it was confirmed that all the ITZO thin films have amorphous structure and the surface roughness of films are very smooth in the range of 0.561 to 0.263 nm. In this study, it was found that amorphous ITZO thin film is a very promising material for organic solar cell.

Electrical and Optical Properties of the IZTO Thin Film Deposited on PET Substrates with SiO2 Buffer Layer (SiO2 버퍼층을 갖는 PET 기판위에 증착한 IZTO 박막의 전기적 및 광학적 특성)

  • Park, Jong-Chan;Joung, Yang-Hee;Kang, Seong-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.3
    • /
    • pp.578-584
    • /
    • 2017
  • $SiO_2$ buffer layer (100 nm) has been deposited on PET substrate by electron beam evaporation. And then, IZTO (In-Zn-Sn-O) thin film has been deposited on $SiO_2$/PET substrate with different RF power of 30 to 60 W, working pressure, 1 to 7 mTorr, by RF magnetron sputtering. Structural, electrical and optical properties of IZTO thin film have been analyzed with various RF powers and working pressures. IZTO thin film deposited on the process condition of 50 W and 3 mTorr exhibited the best characteristics, where figure of merit was $4.53{\times}10^{-3}{\Omega}^{-1}$, resistivity, $4.42{\times}10^{-4}{\Omega}-cm$, sheet resistance, $27.63{\Omega}/sq.$, average transmittance (400-800 nm), 81.24%. As a result of AFM, all the IZTO thin film has no defects such as pinhole and crack, and RMS surface roughness was 1.147 nm. Due to these characteristics, IZTO thin film deposited on $SiO_2$/PET structure was found to be a very compatible material that can be applied to the next generation flexible display device.