Browse > Article
http://dx.doi.org/10.4313/JKEM.2021.34.2.99

Crystallization Behavior and Electrical Properties of IZTO Thin Films Fabricated by Ion-Beam Sputtering  

Park, Ji Woon (School of Materials Science and Engineering, Yeungnam University)
Bak, Yang Gyu (School of Materials Science and Engineering, Yeungnam University)
Lee, Hee Young (School of Materials Science and Engineering, Yeungnam University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.34, no.2, 2021 , pp. 99-104 More about this Journal
Abstract
Ion-beam sputtering (IBS) was used to deposit semiconducting IZTO (indium zinc tin oxide) thin films onto heavily-doped Si substrates using a sintered ceramic target with the nominal composition In0.4Zn0.5Sn0.1O1.5, which could work as a channel layer for oxide TFT (oxide thin film transistor) devices. The crystallization behavior and electrical properties were examined for the films in terms of deposition parameters, i.e. target tilt angle and substrate temperature during deposition. The thickness uniformity of the films were examined using a stylus profilometer. The observed difference in electrical properties was not related to the degree of crystallization but to the deposition temperature which affected charge carrier concentration (n), electrical resistivity (ρ), sheet resistance (Rs), and Hall mobility (μH) values of the films.
Keywords
IBS; IZTO; Target tilt angle; Channel layer; Oxide TFT;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Zhang, H. Zhang, J. Yang, X. Ding, and J. Zhang, IEEE Trans. Electron Devices, 66, 5170 (2019). [DOI: https://doi.org/10.1109/TED.2019.2949702]   DOI
2 I. H. Baek, J. J. Pyeon, S. H. Han, G. Y. Lee, B. J. Choi, J. H. Han, T. M. Chung, C. S. Hwang, and S. K. Kim, ACS Appl. Mater. Interfaces, 11, 14892 (2019). [DOI: https://doi.org/10.1021/acsami.9b03331]   DOI
3 J. Sheng, T. H. Hong, D. H. Kang, Y. Yi, J. H. Lim, and J. S. Park, ACS Appl. Mater. Interfaces, 11, 12683 (2019). [DOI: https://doi.org/10.1021/acsami.9b02999]   DOI
4 J. W. Park, S. W. Han, N. Jeon, J. Jang, and S. Yoo, IEEE Electron Device Lett., 29, 1319 (2008). [DOI: https://doi.org/10.1109/LED.2008.2005737]   DOI
5 R. S. Sonawane, S. G. Hegd e, and M. K. Dongare, Mater. Chem. Phys., 77, 744 (2003). [DOI: https://doi.org/10.1016/S0254-0584(02)00138-4]   DOI
6 H. K. Park, J. A. Jeong, Y. S. Park, H. K. Kim, and W. J. Cho, Thin Solid Films, 517, 5563 (2009). [DOI: https://doi.org/10.1016/j.tsf.2009.02.138]   DOI
7 C. Y. Koo, K. J. Kim, K. H. Kim, and H. Y. Lee, J. Korean Ceram. Soc., 37, 1025 (2000).
8 J. M. Park, J. Y. Lee, H. Y. Lee, and J. B. Park, Trans. Electr. Electron. Mater., 11, 266 (2010). [DOI: https://doi.org/10.4313/TEEM.2010.11.6.266]   DOI
9 J. A. Lee, Y. W. Heo, J. H. Lee, H. Y. Lee, and J. J. Kim, J. Nanoelectron. Optoelectron., 12, 598 (2017). [DOI: https://doi.org/10.1166/jno.2017.2054]   DOI
10 Y. S. Kim, W. J. Hwang, K. T. Eun, and S. H. Choa, Appl. Surf. Sci., 257, 8134 (2011). [DOI: https://doi.org/10.1016/j.apsusc.2011.04.123]   DOI
11 I. Noviyana, A. D. Lestari, M. Putri, M. S. Won, J. S. Bae, Y. W. Heo, and H. Y. Lee, Materials, 10, 702 (2017). [DOI: https://doi.org/10.3390/ma10070702]   DOI
12 A. D. Lestari, I. Noviyana, M. Putri, Y. W. Heo, and H. Y. Lee, J. Nanosci. Nanotechnol., 19, 1686 (2019). [DOI: https://doi.org/10.1166/jnn.2019.16251]   DOI
13 A. D. Lestari, M. Putri, Y. W. Heo, and H. Y. Lee, J. Nanosci. Nanotechnol., 20, 252 (2020). [DOI: https://doi.org/10.1166/jnn.2020.17222]   DOI
14 R. N. Bukke, C. Avis, M. N. Naik, and J. Jang, IEEE Electron Device Lett., 39, 371 (2018). [DOI: https://doi.org/10.1109/LED.2018.2791633]   DOI
15 Y. D. Ko, C. H. Lee, D. K. Moon, and Y. S. Kim, Thin Solid Films, 547, 32 (2013). [DOI: https://doi.org/10.1016/j.tsf.2013.05.069]   DOI
16 K. H. Kim, M. Putri, H. J. Lee, C. Y. Koo, J. A. Lee, J. J. Kim, and H. Y. Lee, J. Nanoelectron. Optoelectron., 10, 541 (2015). [DOI: https://doi.org/10.1166/jno.2015.1798]   DOI