• 제목/요약/키워드: Zn fume

검색결과 15건 처리시간 0.02초

고온 및 Zn Fume에 의한 소재들의 부식성 분석 (Corrosion Analysis of Materials by High Temperature and Zn Fume)

  • 백민숙
    • 한국산학기술학회논문지
    • /
    • 제19권5호
    • /
    • pp.551-556
    • /
    • 2018
  • 대부분의 용융 아연 도금 설비에 사용되고 있는 소재는 SM45C(기계구조용 탄소강, KS규격)으로, 주로 저렴한 가격적인 측면에 의해 사용되고 있다. 용융 아연 도금의 특성상 해당 용탕에서 발생되어 올라오는 Zn Fume과 고온의 열에 의한 도금 설비의 산화가 발생되고 있으며 현재 용융 아연 도금 설비의 교체 주기의 시기는 6개월으로 많은 시간과 설비 비용이 낭비 되어오고 있다. 이에 본 연구에서는 다양한 소재들(Inconel625, STS304, SM45C)을 이용하여 고온과 Zn Fume 환경에서 강제로 산화 시켜 각각의 부식성을 확인하고 비교 분석하였으며, 각 소재들의 용융 아연 도금 현장 설비에 적용 가능성을 파악하고자 진행하였다. 강제 산화 실험은 650도의 대기로 내에 Zn 용탕을 두고, Ar 가스를 용탕 내에서 직접 버블링하여 Zn fume를 발생시켜 고온, Zn fume에 의한 부식을 행하는 실험을 하였다. 30일 후 Sample들을 꺼내어 표면의 산화층을 EDS, SEM으로 확인하고, 동전위분극 시험을 이용하여 부식성을 비교 분석하였다.

용융아연도금욕에 적용되는 용탕에 따른 Ni합금의 부식성 분석 (Corrosion Analysis of Ni alloy according to the type of molten metal)

  • 백민숙
    • 한국산학기술학회논문지
    • /
    • 제18권6호
    • /
    • pp.459-463
    • /
    • 2017
  • 대부분의 용용융아연도금 설비는 오픈된 공간에서 용융된 아연을 사용하고 있기 때문에 용융된 아연의 용탕에서 발생되는 고온, Zn Fume 등에 의한 산화가 발생되고 있다. 현재 설비에 사용되고 있는 소재는 SM45C(기계구조용 탄소강, KS규격)으로 사용되고 있다. Zn Fume이 집중적으로 발생되고 있는 부분의 설비를 부분적으로 고온, Zn Fume에 강한 재료를 사용한다면 설비의 수명과 성능향상에 도움이 될 것으로 예상된다. 따라서 본 연구에서는 직접 설계한 Ni 합금과 Inconel 합금을 직접 고온, Zn Fume 환경에서 산화 시켜 각각의 부식성을 확인하여 비교 분석하였으며, 용융아연도금에 사용되는 용탕의 종류를 나누어 용탕에 따른 각 합금의 부식성 등을 확인하여 보았다. 500~700도로 내에 Zn, Al-Zn 용탕을 두고 Ar 가스를 이용하여 용탕에서 직접 버블링하여 Zn fumef를 발생시켜 고온, Zn fume에 의해 강제 부식을 행하는 실험을 하였다. 30일 후의 sample들을 꺼내어 표면의 산화층을 광학현미경, SEM으로 확인하고, 동전위분극 시험을 이용하여 부식성을 분석하였으며, 부식성은 용탕의 종류에 따라 달라지는 모습을 보였다.

모조선소의 밀폐된 작업장에서의 공기중 용접흄 및 중금속 농도에 관한 조사 연구 (A study on Airborne Concentration of Welding Fumes and Metals in Confined Spaces of a Shipyard)

  • 곽영순;백남원
    • 한국산업보건학회지
    • /
    • 제7권1호
    • /
    • pp.113-131
    • /
    • 1997
  • This study was performed to evaluate the exposure levels of worker exposed to welding fume and metals in confined spaces of a shipyard. The airborne concentration of welding fumes and metal elements in confined spaces were compared with those in open working areas. Results of the study were as follows. 1. The geometric mean of welding fume concentration in a confined space was $16.6mg/m^3$, which contained $3.9mg/m^3$ Fe, $1.2mg/m^3$ Mg, $0.8mg/m^3$ Zn, $0.008mg/m^3$ Cu, $0.008mg/m^3$ Pb, $0.005mg/m^3$ Ni, $0.003mg/m^3$ Cr, $0.003mg/m^3$ Cd. The geometric mean of welding fume concentration in open working areas was $5.2mg/m^3$, which contained $1.1mg/m^3$ Fe, $0.3mg/m^3$ Mg, $0.3mg/m^3$ Zn, $0.004mg/m^3$ Cu, $0.008mg/m^3$ Pb, $0.005mg/m^3$ Ni, $0.003mg/m^3$ Cr, $0.0003mg/m^3$ Cd. The geometric mean of welding fume concentration in confined spaces was 3,2 times higher than that in open working areas. The geometric mean concentrations of such metals as Fe, Mg, Zn, or Cu within fume in confined spaces were 2-4 times higher than those in open working areas, while little difference made such metals as Pb, Ni, Cr, Cd. 2. In 32 samples out of a total of 39 samples (82.1%) collected in confined spaces, the concentrations of welding fume exceeded TLV. while so did 19 samples out of 33 samples (57.6%) in open working areas. As for the concentrations of metals in welding flume from confined spaces, Fe exceeded TLV in 14 out of a total of 38 samples (36.8%), Mn exceeded TLV in 23 out of a total of 38 samples (60.5%). As for the concentration of metals in welding fume from open working areas, Fe exceeded TLV in 3 out of a total of 34 samples (8.8%), Mn exceeded TLV in 6 out of a total of 34 samples (17.6%). Considering additive effect among metals, in 31 out of a total of 39 samples (79.5%) collected in confined spaces, the concentrations of welding fume exceeded TLV, while so did 14 out of 38 samples (55.6%) in open working areas. 3. In respect of base metal and welding type the concentration of total welding fume by $CO_2$ gas W./mild steel was the highest, followed by semiauto MMA/mild steel, then followed by TIG or $CO_2$ gas W./stainless steel. ; as for concentration of metal within fume, a decreasing order was Fe, Zn, Mn, and Pb in $CO_2$ gas W./mild steel and semiauto MMA/mild steel, but Fe, Mn, Cr, and Ni in TIG or $CO_2$ gas W./stainless steel. 4. In case of welding base metal covered by paint, contents of Zn within red paint chip and within gray paint chip were 14.0% and 0.08% respectively, which showed a little difference, while the airborne concentrations of Zn within fume during welding base metal covered red paint and gray paint were $1.351mg/m^3$ and $1.018mg/m^3$ respectively, which showed little difference. As for Pb, contents of red paint chip and gray paint chip were 0.14% and 0.08% respectively, and the airborne concentrations within fume during welding base metal covered red paint and gray paint were $0.009mg/m^3$ and $0.007mg/m^3$ respectively, both of which showed little difference.

  • PDF

용접 작업 중 발생하는 유해물질의 영향 (An Effect of Harmful Materials During Welding Work)

  • 이경만;이철구
    • 한국공작기계학회논문집
    • /
    • 제17권1호
    • /
    • pp.43-49
    • /
    • 2008
  • This study is about an influence of harmful factors of welding fumes such as Fe, Mn, Cu, Zn to workers who inhales them in welding sites. The influence can be measured with the density of heavy metals in blood after welding. The main factors of the measurement are TWA, a density of welding fume, and a level of heavy metals. The results indicate that there is a positive effect of moving fans as a way of improving the condition in welding workplaces. While welding was done, TWA exceeded the level of Fe 40% and Zn 10% and the level of heavy metals in blood was below the standard for the workers who were under the experiment. Also when the wind was applied on the front side by a fan, the welding fume significantly reduced. It can be concluded that wearing protection gears with safety devices is one of important factors.

용접작업 형태별 공기중 용접흄 농도와 금속 성분에 관한 조사연구 (Airborne Concentrations of Welding Fume and Metal Components by Type of Welding)

  • 이권섭;백남원
    • 한국산업보건학회지
    • /
    • 제4권1호
    • /
    • pp.71-80
    • /
    • 1994
  • This study was conducted to evaluate worker exposure to welding fume in automobile body shop and to evaluate metal components by type of welding. The results are summarized as follows: 1. Average concentrations of total welding fume without and with ventilation were $5.2mg/m^3$ and $2.49mg/m^3$, respectively. Thus, the average reduction rate of total fume by ventilation was 52.1 %. 2. The highest fume concentration was indicated at shielded arc welding, followed by $CO_2$ gas welding, argon arc welding, and spot welding in order of decreasing concentration. 3. Average respirable fume concentrations without and with ventilation were $2.97mg/m^3$ and $1.64mg/m^3$, respectively. 4. Further analysis of welding fume indicated that total fume consisted of $Fe_2O_3$, ZnO, Mn, Pb, and CuO, in order of decreasing amount. Combined effect of metals was below the American Conference of Governmental Industrial Hygienists (ACGIH)Threshold Limit Values (TLVs).

  • PDF

산업 설비 재료에 CCO박막의 적용을 위한 부식성 분석 (Corrosion analysis for application of CCO thin films to industrial equipment materials)

  • 백민숙
    • 한국산학기술학회논문지
    • /
    • 제19권6호
    • /
    • pp.98-103
    • /
    • 2018
  • 산업의 발전에 따라 설비 및 재료 등 따라서 재료 표면의 특성을 내식성 및 고강도, 내마모성 등을 향상 시키기 위하여 지금까지 많은 코팅 기술들이 발전해 왔다. 그 중 CCO(CaCoO, 이후 CCO) 박막 형성은 전자재료 영역에서 연구, 사용이 되어오고 있는데, 이 CCO 박막의 특징 중 하나가 고온의 열에 강하다는 것이 있다. 특히 CCO 박막을 형성 시키는 방법 또한 비교적 간단하여 고온의 산화 분위기에 도입이 가능 할 것으로 판단되었다. 따라서 본 연구에서는 이 CCO 박막의 코팅이 용융 아연 도금 설비에 적용을 하기 전에, 고온 및 Zn fume에 대한 부식성을 파악하여 용융 아연 도금 설비에 적용이 가능한지를 파악하기 위한 실험 및 분석을 실시 하였다. 우선 기본 소재 STS304 표면에 CCO 박막을 형성 시키고, 650도의 대기로에서 Zn fume의 분위기 내에서 산화 시킨 후 CCO 박막의 부식 정도를 확인 및 측정 하였다. 산화는 30일간 진행되었고, 30일 후 SEM을 이용하여 CCO박막의 형상을 확인 하였으며 동전위분극 실험을 통하여 부식성을 분석하였다.

용접공정에서 발생된 공기중 흄의 조성과 농도에 영향을 미치는 요인에 관한 연구 (A Study on Factors Affecting Airborne Fume Composition and Concentration in Welding Process)

  • 신용철;이광용;박승현;이나루;정지연;박정근;오세민;문영한
    • 한국산업보건학회지
    • /
    • 제7권2호
    • /
    • pp.181-195
    • /
    • 1997
  • The purpose of this study was to investigate factors affecting the composition and concentrations of fumes generated from various types of welding processes. The results are as follows. 1. Iron(Fe), zinc(Zn) and manganese(Mn) were predominant in Welding fumes. The Fe content in total fumes was 25.5% in coated electrode and 28.2% in $CO_2$ are welding, and the Zn content was 4.5% and 9.1%, respectively, and the Mn was 3.6% and 7.8%, respectively. 2. It was found that the important factors determining composition and concentration of fumes were type of industries, type of welding processes, type and composition of electrodes, composition of base metals, confinement of workplaces or condition of ventilation, work intensity, coated metals such as lead and Zn in paint. 3. The Mn content in airborne fumes was highly correlated with that of electrode(r=0.77, p<0.01) and was about 4 times higher than that in electrodes or base metals. The results lindicate that Mn is well evaporated into air during welding. The higher vapor pressure of Mn may explain this phenomenon. 4. the airborne total fume concentrations were significantly different among types of industries(p<0.001). The airborne total fume concentration was higher in order of sleel-structure manufacturing($GM=15.1mg/m^3$), shipbuilding($GM=13.2mg/m^3$), automobile-component manufacturing ($GM=7.8mg/m^3$) and automobile assembling industry($GM=3.0mg/m^3$) 5. The airbone total fume concentration was 6 times higher in $CO_2$ welding than in coated electrode welding, and approximately 3 times higher in confined area than in open area, in steel-structure manufacturing industry. 6. The concentration of welding fume outside welding helmet was about 2 times higher than that inside it. It is recommened that air sampling be done inside helmet to evaulate worker's exposure accurately, for it has an outstanding effect on reducing worker exposure to fumes and other contaminants.

  • PDF

Anti-Corrosion Performance and Applications of PosMAC® Steel

  • Sohn, Il-Ryoung;Kim, Tae-Chul;Ju, Gwang-Il;Kim, Myung-Soo;Kim, Jong-Sang
    • Corrosion Science and Technology
    • /
    • 제20권1호
    • /
    • pp.7-14
    • /
    • 2021
  • PosMAC® is a brand of Zn-Mg-Al hot-dip coated steel sheet developed by POSCO. PosMAC® can form dense surface oxides in corrosive environments, providing advanced corrosion resistance compared to traditional Zn coatings such as GI and GA. PosMAC® 3.0 is available for construction and solar energy systems in severe outdoor environments. PosMAC®1.5 has better surface quality. It is suitable for automotive and home appliances. Compared to GI and GA, PosMAC® shows significantly less weight reduction due to corrosion, even with a lower coating thickness. Thin coating of PosMAC® provides advanced quality and productivity in arc welding applications due to its less generation of Zn fume and spatters. In repeated friction tests, PosMAC® showed lower surface friction coefficient than conventional coatings such as GA, GI, and lubricant film coated GA. Industrial demand for PosMAC® steel is expected to increase in the near future due to benefits of anti-corrosion and robust application performance of PosMAC® steel.

용접작업시 유해물질 발생이 건강에 미치는 영향과 관리대책 (The management counterplan of health caused by harmful materials during the welding work)

  • 이경만;이철구
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2006년 추계학술발표대회 개요집
    • /
    • pp.274-276
    • /
    • 2006
  • This study was researched by measuring the amount how much a welder inhaled the major harmful metals such as Fe, Mn, Cu, Zn and so on which occurred at the welding site during welding work and also by measuring the heavy metal concentration in a welder's blood after the welding. By using the mobile fan, the measure of welding fume and the result were taken.

  • PDF

용접사업장 근로자의 흄 및 금속 노출농도에 대한 평가와 혈중 금속 농도 (Airborne Concentrations of Welding Fume and Metals of Workers Exposed to Welding Fume)

  • 최호춘;김강윤;안선희;박화미;김소진;이영자;정규철
    • 한국산업보건학회지
    • /
    • 제9권1호
    • /
    • pp.56-72
    • /
    • 1999
  • Airborne concentrations of welding fumes in which 13 different metals such as Al, Cd, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Si, Sn, Ti, and Zn were analyzed were measured at 18 factories including automobile assembly and manufactures, steel heavy industries and shipyards. Air samples were collected by personal sampler at each worker's worksite(n=339). Blood levels of Cd, Cu, Fe, Mn, Pb and Zn were also measured from samples taken from 447 welders by atomic absorption spectrometry and compared with control values obtained from 127 non-exposed workers. The results were as follows ; 1. Among various welding types, $CO_2$ welding 70.2 % were widely used, shielded metal arc welding(SMAW) 22.1 % came next, and rest of them were metal inert gas(MIG) welding, submerged arc welding(SAW), spot welding(SPOT) and tungsten inert gas(TIG) welding. 2. Welding fume concentration was $0.92mg/m^3$($0.02{\sim}15.33mg/m^3$) at automobile assembly and manufactures, $4.10mg/m^3$($0.02{\sim}70.75mg/m^3$) at steel heavy industries and $5.59mg/m^3$($0.30{\sim}91.16mg/m^3$) at shipyards, respectively, showing significant difference among industry types. Workers exposed to high concentration of welding fumes above Korean Permissible Exposure Limit(KPEL) amounted to 7.9 % and 12.5 %, in $CO_2$ welding and in SMAW at automobile assembly and manufactures and 62.7 % in $CO_2$ welding, and 12.5 % in SMAW at shipyards, and 66.2 % in $CO_2$ welding and 70.6 % in SMAW at steel heavy industries. 3. Geometric mean of airborne concentration of each metal released from welding fumes was below one 10th of KPEL in all welding types. Percentage of workers, however, exposed to airborne concentration of metals above KPEL amounted to 16.8 % in Mn and 7.6 % in Fe in $CO_2$ welding; 37.5 % in Cu in SAW, 30 % in Cu in TIG; and 25 % in Pb in SPOT welding. As a whole, 76 Workers(22.4%) were exposed to high concentration of any of the metals above KPEL. 4. There were differences in airborne concentration of metals such as Al, Cd, Cr, Cu. Fe. Mn, Mo, Ni, Pb, Si, Sn, Ti and Zn by industry types. These concentrations were higher in shipyards and steel heavy industries than in automobile assembly and manufactures. Workers exposed to higher concentration of Pb above KPEI amounted to 7.4 % of workers(7/94) in automobile assembly and manufactures. In shipyards, 19.2 % of workers(19/99) were over-exposed to Mn and 7.1 % (7/99) to Fe above KPEL. In steel heavy industries, 14.4 %(21/146), 7.5 %(11/146) and 13 %(19/146) were over-exposed to Mn, Fe and Cu, respectively. As a whole, 76 out of 339 workers(22.4%) were exposed to any of the metals above KPEL. 5. Blood levels of Cd, Cu, Fe, Mn, Pb, and Zn in welders were $0.11{\mu}g/100m{\ell}$, $0.84{\mu}g/m{\ell}$, $424.4{\mu}g/m{\ell}$, $1.26{\mu}g/100m{\ell}$, $5.01{\mu}g/100m{\ell}$ and $5.68{\mu}g/m{\ell}$, respectively, in contrast to $0.09{\mu}g/100m{\ell}$, $0.70{\mu}g/m{\ell}$, $477.2{\mu}g/m{\ell}$, $0.73{\mu}g/100m{\ell}$, $3.14{\mu}g/100m{\ell}$ and $6.15{\mu}g/m{\ell}$ in non-exposed control groups, showing significantly higher values in welders but Fe and Zn.

  • PDF