Browse > Article
http://dx.doi.org/10.14773/cst.2021.20.1.7

Anti-Corrosion Performance and Applications of PosMAC® Steel  

Sohn, Il-Ryoung (Automotive Steel Surface Research Group, POSCO Technical Research Laboratories)
Kim, Tae-Chul (Automotive Steel Surface Research Group, POSCO Technical Research Laboratories)
Ju, Gwang-Il (Surface Treatment Dept, POSCO Gwangyang Works)
Kim, Myung-Soo (Automotive Steel Surface Research Group, POSCO Technical Research Laboratories)
Kim, Jong-Sang (Automotive Steel Surface Research Group, POSCO Technical Research Laboratories)
Publication Information
Corrosion Science and Technology / v.20, no.1, 2021 , pp. 7-14 More about this Journal
Abstract
PosMAC® is a brand of Zn-Mg-Al hot-dip coated steel sheet developed by POSCO. PosMAC® can form dense surface oxides in corrosive environments, providing advanced corrosion resistance compared to traditional Zn coatings such as GI and GA. PosMAC® 3.0 is available for construction and solar energy systems in severe outdoor environments. PosMAC®1.5 has better surface quality. It is suitable for automotive and home appliances. Compared to GI and GA, PosMAC® shows significantly less weight reduction due to corrosion, even with a lower coating thickness. Thin coating of PosMAC® provides advanced quality and productivity in arc welding applications due to its less generation of Zn fume and spatters. In repeated friction tests, PosMAC® showed lower surface friction coefficient than conventional coatings such as GA, GI, and lubricant film coated GA. Industrial demand for PosMAC® steel is expected to increase in the near future due to benefits of anti-corrosion and robust application performance of PosMAC® steel.
Keywords
Anti-corrosion; Zn-Mg-Al alloy coating; $PosMAC^{(R)}$1.5; $PosMAC^{(R)}$3.0;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Morimoto, M. Kurosaki, K. Honda, K. Nishimura, S. Tanaka, A. Takahashi, and H. Shindo, Tetsu-to-Hagane, 89, 161 (2003). https://doi.org/10.2320/matertrans.M2010256   DOI
2 Technical Report, Zinc-Magnesium-Aluminium coatings for Automotive Industry, Steel Institute VDEh Steel Institute (2013).
3 S. Schuerz, M. Fleischanderl, G. H. Luckeneder, K. Preis, T. Haunschmied, G. Mori, and A. C. Kneissl, Corros. Sci., 51, 2355 (2009). https://doi.org/10.1016/j.corsci.2009.06.019   DOI
4 M. S. Oh, H. J. Lee, and J. S. Kim, Galvatech proceedings (2015).
5 J. A. Heath, American Hot Dip Galvanizers Association, 3, 24 (1961).
6 US Patent, US3245765A (1962).
7 US Patent, US3505043A (1969).
8 A. Komatsu, H. Izutani, T. Tsujimura, A. Andoh and T. Kittaka, Tetsu-to-Hagane, 86, 534 (2000). https://doi.org/10.2355/tetsutohagane1955.86.8_534   DOI
9 B. Schinkinger and S. Zugner, 4th International Conference on Steels in Cars and Trucks, Braunschweig, Germany, June 15-19 (2014).
10 J. Schulz, F. Vennemann, and G. Nothacker, Galvatech proceedings, 153 (2015).
11 M. S. Oh, S. H. Kim, J. S. Kim, J. W. Lee, J. H. Shon, and Y. S. Jin, Met. Mater. Int., 22, 26 (2016). https://doi.org/10.1007/s12540-015-5411-9   DOI
12 Ki Tae Kim, Young Ran Yoo, and Young Sik Kim, Corros. Sci. Tech., 18, 86 (2018). https://doi.org/10.14773/cst.2019.18.3.86   DOI
13 I. R. Sohn, T. C. Kim, W. J. Lim, J. H. Lee, K. Y. Chun, and J. S Kim, 2019 International Corrosion Engineering Conference, Oct 14-17. Inchon Korea (2019).
14 ASTM A1046/A1046M - 17a, Standard Specification for Steel Sheet, Zinc-Aluminum-Magnesium Alloy-Coated by the Hot-Dip Process (2017).
15 C. H. Chang, K. S. Shin, M. K. Joo, I. R. Shon, and S. W. Jung, RIST Journal of R&D, 29, 1 (2015).
16 ISO 9227, Corrosion tests in artificial atmospheres - Salt spray tests (2017).
17 ISO 14993, Corrosion of metals and alloys - Accelerated testing involving cyclic exposure to salt mist, dry and wet conditions (2018).
18 I. Odnevall and C. Leygraf, Corros. Sci., 34, 1213 (1993). https://doi.org/10.1016/0010-938X(93)90082-R   DOI
19 GMW14872, An accelerated laboratory corrosion test to evaluate automotive coatings and components (2018).
20 P. Volovitch, T. N. Vu, C. Allely, A. Abdel Aal, and K. Ogle, Corros. Sci., 53, 2437 (2011). https://doi.org/10.1016/j.corsci.2011.03.016   DOI
21 T. E. Graedel, J. Electrochem. Soc., 136, 193C (1989). https://doi.org/10.1149/1.2096868   DOI
22 J. E. Svensson, L.G. Johansson, Corros. Sci., 34, 721 (1993). https://doi.org/10.1016/0010-938X(93)90096-Y   DOI
23 E. Diler, B. Rouvellou, S. Rioual, B. Lescop, G. Nguyen Vien, and D. Thierry, Corros. Sci., 87, 111 (2014). https://doi.org/10.1016/j.corsci.2014.06.017   DOI