• Title/Summary/Keyword: Zn electrode

Search Result 397, Processing Time 0.026 seconds

The Movement Characteristic of Micro Droplet by BZN in EWOD structure (EWOD 구조에서 상유전체 BZN에 의한 micro droplet의 이동 특성)

  • Kim, Nah-Young;Hong, Sung-Min;Park, Soon-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.36-38
    • /
    • 2005
  • This study is about how to lower the driving voltage that enables to move the micro droplet by the EWOD (Electro Wetting On Dielectric) mechanism. EWOD is well known that it is used ${\mu}-TAS$ digital micro fluidics system. As the device which is fabricated with dielectric layer between electrode and micro droplet is applied voltage, the hydrophobic surface is changed into the hydrophilic surface by electrical property. Therefore, EWOD induces the movement of micro droplet with reducing contact angle of micro droplet. The driving voltage was depended on the dielectric constant of dielectric layer, thus it can be reduced by increase of dielectric constant. Typically, very high voltage ($100V{\sim}$) is used to move the micro droplet. In previous study, we used $Ta_{2}O_{5}$ as the dielectric layer and driving voltage was 23V that reduced 24 percent compared with $SiO_2$. In this study, we used $BZN(Bi_{2}O_{3}ZnO-Nb_{2}O_{5})$ layer which had high dielectric constant. It was operated the just 12V. And micro droplet was moved within Is on 15V. It was reduced the voltage until 35 percents compare with $Ta_{2}O_{5}$ and 50 percents compare with $SiO_2$. The movement of micro droplet within 1s was achieved with BZN (ferroelectrics)just on 15V.

  • PDF

Characteristics of Surface Morphology According to the Pulse Change When Wire-cut Electrical discharge Machining (와이어컷 방전가공시 펄스변화에 따른 표면형상 특성)

  • 이재명
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.537-542
    • /
    • 2000
  • Wire deflection, surface roughness and roundness were observed on changing discharge time for electrical discharge machining(EDM) of STD-11 in various conditions of thickness. The wire deflection was decreased as increasing discharge time and wire tension. The deflection is the smallest at the speed of wire of 10.6m/min and the water specific resistivity of 5k$\Omega$.cm. The deflection is found to be decreased as increasing dwell time. But if the water pressure is high, it is found not to be changed after the vibration of 4sec. The component of copper(Cu) and zinc(Zn), which is the main material of wire electrode, is observed for rough wire-cutting EDM of STD-11. This phenomena is found to be similar in spite of the change of EDM energy level. But it will be improved by changing the material and the shape of wire. The roundness of middle is found to be worse than that of upper and it is increased as the thickness of material is increased.

  • PDF

Synthesis, Structures and Properties of Three Metal-organic Frameworks Based on 3-(4-((1H-imidazol-1-yl)methyl)phenyl)acrylic Acid

  • Liang, Peng;Ren, Tian-Tian;Tian, Wei-Man;Xu, Wen-Jia;Pan, Gang-Hong;Yin, Xian-Hong
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.182-188
    • /
    • 2014
  • Three new transition metal complexes based on Ozagrel $[Cu(Ozagrel)]_n$ (1), $[Zn(Ozagrel)(Cl)]_n$ (2), ${[Mn_2-(Ozagrel)(1,4-ndc)_2]{\cdot}(H_2O)}_n$ (3), (Ozagrel = 3-(4-((1H-imidazol-1-yl)methyl)phenyl)acrylic acid; 1,4-ndc = 1,4-Naphthalenedicarboxylic acid) have been hydrothermally synthesized and characterized by elemental analyse, IR, TG, PXRD, electrochemical analysis and single crystal X-ray diffraction. X-ray structure analysis reveals that 1 and 3 are 3D coordination polymers, while complex 2 is a two-dimensional network polymer, the 2D layers are further packed into 3D supramolecular architectures that are connected through hydrogen bonds. The electrochemistry of 1-3 was studied by cyclic voltammetry in methanol and water using a glassy carbon working electrode. Also, thermal decomposition process and powder X-ray diffraction of complexes were investigated.

Polymer (Polydimethylsiloxane (pdms)) Microchip Plasma with Electrothermal Vaporization for the Determination of Metal Ions in Aqueous Solution

  • Ryu, Won-Kyung;Kim, Dong-Hoon;Lim, H.B.;Houk, R.S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.553-556
    • /
    • 2007
  • We previously reported a 27.12 MHz inductively coupled plasma source at atmospheric pressure for atomic emission spectrometry based on polymer microchip plasma technology. For the PDMS polymer microchip plasma, molecular emission was observed, but no metallic detection was done. In this experiment, a lab-made electrothermal vaporizer (ETV) with tantalum coil was connected to the microchip plasma for aqueous sample introduction to detect metal ions. The electrode geometry of this microchip plasma was redesigned for better stability and easy monitoring of emission. The plasma was operated at an rf power of 30-70 W using argon gas at 300 mL/min. Gas kinetic temperatures between 800-3200 K were obtained by measuring OH emission band. Limits of detection of about 20 ng/mL, 96.1 ng/mL, and 1.01 μ g/mL were obtained for alkali metals, Zn, and Pb, respectively, when 10 μ L samples in 0.1% nitric acid were injected into the ETV.

Thermal Effect on Characteristics of IZTO Thin Films Deposited by Pulsed DC Magnetron Sputtering

  • Son, Dong-Jin;Ko, Yoon-Duk;Jung, Dong-Geun;Boo, Jin-Hyo;Choa, Sung-Hoon;Kim, Young-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.847-851
    • /
    • 2011
  • This study examined In-Zn-Sn-O (IZTO) films deposited on glass substrates by pulsed DC magnetron sputtering with various substrate temperatures. The structural, electrical, optical properties were analyzed. Xray diffraction showed that the IZTO films prepared at temperatures > $150^{\circ}C$ were crystalline which adversely affected the electrical properties. Amorphous IZTO films prepared at $100^{\circ}C$ showed the best properties, such as a low resistivity, high transmittance, figure of merit, and high work function of $4.07{\times}10^{-4}\;{\Omega}$, 85%, $10.57{\times}10^{-3}\;{\Omega}^{-1}$, and 5.37 eV, respectively. This suggests that amorphous IZTO films deposited at relatively low substrate temperatures ($100^{\circ}C$) are suitable for electrode applications, such as OLEDs as a substitute for conventional crystallized ITO films.

Nanocrystalline Antimony Oxide Films for Dye-Sensitized Solar Cell Applications

  • Kim, Ji-Hye;Jang, Ji-Yeon;Kim, Sung-Chul;Han, Chi-Hwan;Kim, Seung-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1204-1208
    • /
    • 2012
  • A new photoelectrode composed of $Sb_6O_{13}$ nanoparticles with the size of 20-30 nm has been prepared via thermolysis of a colloidal antimony pentoxide tetrahydrate ($Sb_2O_5{\cdot}4H_2O$) suspension. The $Sb_6O_{13}$ electrode showed good semiconducting properties applicable to dye-sensitized solar cells (DSSCs); the energy band gap was estimated to be $3.05{\pm}0.5$ eV and the position of conduction band edge was close to those of $TiO_2$ and ZnO. The DSSC assembled with the $Sb_6O_{13}$ photoelectrode and a conventional ruthenium-dye (N719) exhibited the overall photo-current conversion efficiency of 0.74% ($V_{oc}$ = 0.76 V, $J_{sc}=1.99\;mAcm{-2}$, fill factor = 0.49) under AM 1.5, $100\;mWcm^{-2}$ illumination.

Partially Dry-Transferred Graphene Electrode with Zinc Oxide Nanopowder and Its Application on Organic Solar Cells (ZnO 나노 분말 코팅 기반 건식전사 그래핀 전극 제작 및 유기태양전지 응용)

  • Jo, Yeongsu;Woo, Chae Young;Hong, Soon Kyu;Lee, Hyung Woo
    • Journal of Powder Materials
    • /
    • v.27 no.4
    • /
    • pp.305-310
    • /
    • 2020
  • In this study, partially dry transfer is investigated to solve the problem of fully dry transfer. Partially dry transfer is a method in which multiple layers of graphene are dry-transferred over a wet-transferred graphene layer. At a wavelength of 550 nm, the transmittance of the partially dry-transferred graphene is seen to be about 3% higher for each layer than that of the fully dry-transferred graphene. Furthermore, the sheet resistance of the partially dry-transferred graphene is relatively lower than that of the fully dry-transferred graphene, with the minimum sheet resistance being 179 Ω/sq. In addition, the fully dry-transferred graphene is easily damaged during the solution process, so that the performance of the organic photovoltaics (OPV) does not occur. In contrast, the best efficiency achievable for OPV using the partially dry-transferred graphene is 2.37% for 4 layers.

The Effects of a Thermal Annealing Process in IGZO Thin Film Transistors

  • Kim, Hyeong-Jun;Park, Hyung-Youl;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.289.2-289.2
    • /
    • 2016
  • In-Ga-Zn-O(IGZO) receive great attention as a channel material for thin film transistors(TFTs) as next-generation display panel backplanes due to its superior electrical and physical properties such as a high mobility, low off-current, high sub-threshold slope, flexibility, and optical transparency. For the purpose of fabricating high performance IGZO TFTs, a thermal recovery process above a temperature of $300^{\circ}C$ is required for recovery or rearrangement of the ionic bonding structure. However diffused metal atoms from source/drain(S/D) electrodes increase the channel conductivity through the oxidation of diffused atoms and reduction of $In_2O_3$ during the thermal recovery process. Threshold voltage ($V_{TH}$) shift, one of the electrical instability, restricts actual applications of IGZO TFTs. Therefore, additional investigation of the electrical stability of IGZO TFTs is required. In this paper, we demonstrate the effect of Ti diffusion and modulation of interface traps by carrying out an annealing process on IGZO. In order to investigate the effect of diffused Ti atoms from the S/D electrode, we use secondary ion mass spectroscopy (SIMS), X-ray photoelectron spectroscopy, HSC chemistry simulation, and electrical measurements. By thermal annealing process, we demonstrate VTH shift as a function of the channel length and the gate stress. Furthermore, we enhance the electrical stability of the IGZO TFTs through a second thermal annealing process performed at temperature $50^{\circ}C$ lower than the first annealing step to diffuse Ti atoms in the lateral direction with minimal effects on the channel conductivity.

  • PDF

Comparative Analysis on Positive Bias Stress-Induced Instability under High VGS/Low VDS and Low VGS/High VDS in Amorphous InGaZnO Thin-Film Transistors

  • Kang, Hara;Jang, Jun Tae;Kim, Jonghwa;Choi, Sung-Jin;Kim, Dong Myong;Kim, Dae Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.5
    • /
    • pp.519-525
    • /
    • 2015
  • Positive bias stress-induced instability in amorphous indium-gallium-zinc-oxide (a-IGZO) bottom-gate thin-film transistors (TFTs) was investigated under high $V_{GS}$/low $V_{DS}$ and low $V_{GS}$/high $V_{DS}$ stress conditions through incorporating a forward/reverse $V_{GS}$ sweep and a low/high $V_{DS}$ read-out conditions. Our results showed that the electron trapping into the gate insulator dominantly occurs when high $V_{GS}$/low $V_{DS}$ stress is applied. On the other hand, when low $V_{GS}$/high $V_{DS}$ stress is applied, it was found that holes are uniformly trapped into the etch stopper and electrons are locally trapped into the gate insulator simultaneously. During a recovery after the high $V_{GS}$/low $V_{DS}$ stress, the trapped electrons were detrapped from the gate insulator. In the case of recovery after the low $V_{GS}$/high $V_{DS}$ stress, it was observed that the electrons in the gate insulator diffuse to a direction toward the source electrode and the holes were detrapped to out of the etch stopper. Also, we found that the potential profile in the a-IGZO bottom-gate TFT becomes complicatedly modulated during the positive $V_{GS}/V_{DS}$ stress and the recovery causing various threshold voltages and subthreshold swings under various read-out conditions, and this modulation needs to be fully considered in the design of oxide TFT-based active matrix organic light emitting diode display backplane.

Effect of the substrate temperature on the properties of transparent conductive IZTO films prepared by pulsed DC magnetron sputtering

  • Ko, Yoon-Duk;Kim, Joo-Yeob;Joung, Hong-Chan;Son, Dong-Jin;Choi, Byung-Hyun;Kim, Young-Sung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.167-167
    • /
    • 2010
  • Indium tin oxide (ITO) has been widely used as transparent conductive oxides (TCOs) for transparent electrodes of various optoelectronic devices, such as liquid crystal displays (LCD) and organic light emitting diodes (OLED). However, indium has become increasingly expensive and rare because of its limited resources. In addition, ITO thin films have some problems for OLED and flexible displays, such as imperfect work function, chemical instability, and high deposition temperature. Therefore, multi-component TCO materials have been reported as anode materials. Among the various materials, IZTO thin films have been gained much attention as anode materials due to their high work function, good conductivity, high transparency and low deposition temperature. IZTO thin films with a thickness of 200nm were deposited on Corning glass substrate at different substrate temperature by pulsed DC magnetron sputtering with a sintered ceramic target of IZTO (In2O3 70 wt%, ZnO 15 wt%, SnO2 15 wt%). We investigated the electrical, optical, structural properties of IZTO thin films. As the substrate temperature is increased, the electrical properties of IZTO are improved. All IZTO thin films have good optical properties, which showed an average of transmittance over 80%. These IZTO thin films were used to fabricate organic light emitting diodes (OLEDs) as anode and the device performances studied. As a result, IZTO has utility value of TCO electrode although it reduced indium and we expect it is possible for the IZTO to apply to flexible display due to the low processing temperature.

  • PDF