• 제목/요약/키워드: Zn concentration

검색결과 1,859건 처리시간 0.024초

수용액 합성법에 의한 ZnO 나노분말의 합성 (Synthesis of zinc oxide nanoparticles via aqueous solution routes)

  • 구진희;양준석;조수진;이병우
    • 한국결정성장학회지
    • /
    • 제26권5호
    • /
    • pp.175-180
    • /
    • 2016
  • 본 연구에서는 수용액 상에서 침전법과 수열합성법을 이용하여 나노크기의 ZnO 분말을 합성하였다. 두 합성방법 모두 출발원료로는 Zn-nitrate hexahydrate($Zn(NO_3)_2{\cdot}6H_2O$)와 NaOH 수용액을 사용하였고, 이들의 혼합용액에 합성조건 즉 반응 pH, 온도 및 Zn precursor의 몰 농도를 달리하여 ZnO 분말을 얻을 수 있었다. 두 합성법 모두에서 단일 상 ZnO는 낮은 Zn 농도 높은 pH 및 높은 온도 조건에서 합성되기 쉬웠다. 합성된 분말의 형상은 flake(plate), multipod 및 rod 형태로 합성 조건에 따라 그 형태의 조절이 가능하였다. 침전법에 비해 수열합성법은 $100^{\circ}C$ 이하인 비교적 낮은 합성온도에서도, 본 연구의 Zn 농도 전 구간(0.1~1 M)과 넓은 pH 범위에서 결정성이 우수한 ZnO 단일 상을 합성할 수 있는 장점을 보여주었다.

Characterization of ZnO Nanorods and SnO2-CuO Thin Film for CO Gas Sensing

  • Lim, Jae-Hwan;Ryu, Jee-Youl;Moon, Hyung-Sin;Kim, Sung-Eun;Choi, Woo-Chang
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권6호
    • /
    • pp.305-309
    • /
    • 2012
  • In this study, ZnO nanorods and $SnO_2$-CuO heterogeneous oxide were grown on membrane-type gas sensor platforms and the sensing characteristics for carbon monoxide (CO) were studied. Diaphragm-type gas sensor platforms with built-in Pt micro-heaters were made using a conventional bulk micromachining method. ZnO nanorods were grown from ZnO seed layers using the hydrothermal method, and the average diameter and length of the nanorods were adjusted by changing the concentration of the precursor. Thereafter, $SnO_2$-CuO heterogeneous oxide thin films were grown from evaporated Sn and Cu thin films. The average diameters of the ZnO nanorods obtained by changing the concentration of the precursor were between 30 and 200 nm and the ZnO nanorods showed a sensitivity value of 21% at a working temperature of $350^{\circ}C$ and a carbon monoxide concentration of 100 ppm. The $SnO_2$-CuO heterogeneous oxide thin films showed a sensitivity value of 18% at a working temperature of $200^{\circ}C$ and a carbon monoxide concentration of 100 ppm.

Glucose Oxidase-Coated ZnO Nanowires for Glucose Sensor Applications

  • Noh, Kyung-Min;Sung, Yun-Mo
    • 한국재료학회지
    • /
    • 제18권12호
    • /
    • pp.669-672
    • /
    • 2008
  • Well-aligned Zinc oxide (ZnO) nanowires were synthesized on silicon substrates by a carbothermal evaporation method using a mixture of ZnO and graphite powder with Au thin film was used as a catalyst. The XRD results showed that as-prepared product is the hexagonal wurzite ZnO nanostructure and SEM images demonstrated that ZnO nanowires had been grown along the [0001] direction with hexagonal cross section. As-grown ZnO nanowires were coated with glucose oxidase (GOx) for glucose sensing. Glucose converted into gluconic acid by reaction with GOx and two electrons are generated. They transfer into ZnO nanowires due to the electric force between electrons and the positively charged ZnO nanostructures in PBS. Photoluminescence (PL) spectroscopy was employed for investigating the movements of electrons, and the peak PL intensity increased with the glucose concentration and became saturated when the glucose concentration is above 10 mM. These results demonstrate that ZnO nanostructures have potential applications in biosensors.

화학습식공정법을 이용한 용액 농도 및 시간에 따른 ZnS 완충층 특성에 대한 분석 (Properties of the ZnS Thin Film Buffer Layer by Chemical Bath Deposition Process with Different Solution Concentrations and Deposition Time)

  • 손경태;김종완;김민영;신준철;조성희;임동건
    • 한국전기전자재료학회논문지
    • /
    • 제27권5호
    • /
    • pp.269-275
    • /
    • 2014
  • In this study, chemical bath deposition method was used to grow Zinc sulfide(ZnS) thin films from $NH_3/SC(NH_2)_2/ZnSO_4$ solutions at $90^{\circ}C$. ZnS thin films have been prepared onto ITO glass. The concentrations of $ZnSO_4$ and $NH_3$ were varied while the concentration of Thiourea was fixed in 0.52 M. Structural, optical, electrical characteristic of ZnS thin films were measured. The physical and optical properties of different ZnS thin films were influenced severely by the concentration of the two reacting chemicals. The optimal concentration of $ZnSO_4$ and $NH_3$ was 0.085 M and 1.6 M, respectively.

Effect of Zinc Vacancy on Carrier Concentrations of Nonstoichiometric ZnO

  • Kim, Eun-Dong;Bahng, Wook
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 춘계학술대회 논문집 반도체재료
    • /
    • pp.17-21
    • /
    • 2001
  • We proposed that concentrations of cartier electron as well as ionized donor defects in nonstoichiometric ZnO are proportional to $P^{-1/2}_{O_2}$, whenever they ionizes singly or doubly, by employing the Fermi-Dirac (FD) statistics for ionization of the native thermal defects $Zn_i$ and $V_o$. The effect of acceptor defect, zinc vacancy $V_{Zn}$made by the Frenkel and Schottky disorder reactions, on carrier concentrations was discussed. By application of the FD statistics law to their ionization while the formation of defects is assumed governed by the mass-action law, the calculation results indicate; 1. ZnO shows n-type conductivity with $N_D>$N_A$ and majority concentration of $n{\propto}\;P^{-1/2}_{O_2}$ in a range of $P_{O_2}$, lower than a critical value. 2. As the concentration of acceptor $V_{Zn}$ increases proportional to $P^{1/2}_{O_{2}}$, ZnO made at extremely high $P_{O_{2}}$, can have p-type conductivity with majority concentration of p ${\propto}\;P^{-1/2}_{O_{2}}$. One may not, however, obtain p-type ZnO if the pressure for $N_{D}<$N_{A}$ is too high.

  • PDF

수열합성에 의한 c축 배향 ZnO 나노로드 배열의 성장과 구조, 광학적 특성 (Growth, Structural and Optical Properties of c-axis Oriented ZnO Nanorods Array by Hydrothermal Method)

  • 김경범;김창일;정영훈;이영진;백종후
    • 한국전기전자재료학회논문지
    • /
    • 제23권3호
    • /
    • pp.222-227
    • /
    • 2010
  • ZnO nanorods array have been grown on the seed crystal coated Si(100) substrate by hydrothermal method. The growth, structural and optical properties of ZnO nanorods array were investigated with a variation of precursor concentration from 0.01 M to 0.04 M. The array density of grown ZnO nanorods per same area was increased with increasing the concentration of precursor solution. Vertically aligned ZnO nanorods with hexagonal wurtzite structure have highly preferred c-axis orientation along (002) lattice plane. Especially, ZnO nanorods array developed from 0.04 M precursor solution showed a diameter of about 85 nm and length of 1.2 {\mu}m$ without any crystallographic defects. The photoluminescence spectra of ZnO nanorods from heavier precursor concentration exhibited stronger UV emission around 380 nm corresponding with near-band-edge emission.

수용액에서 합성한 ZnO 나노구조체의 형상 (Shapes of ZnO Nanostructures Grown in the Aqueous Solutions)

  • 장연익;박훈;이승용;안재평;박종구
    • 한국분말재료학회지
    • /
    • 제12권4호
    • /
    • pp.284-290
    • /
    • 2005
  • ZnO nanostructures with various shapes were synthesized under ambient pressure condition by a wet chemical reaction method. Nanorods of ZnO with hexagonal cross-section and their aggregates with radiate shape were synthesized. Precursor concentration affected considerably the shape evolution of ZnO nanorods. Low precursor concentration was proved to be more preferable to the growth of ZnO nanorods, which is attributed to the intrinsic characteristics of chemical reaction in the synthesis of ZnO from zinc compounds.

원자층 증착법을 통하여 유리 기판에 증착한 Ti-ZnO 박막의 전기적 광학적 특성 (Electrical and Optical Properties of Ti-ZnO Films Grown on Glass Substrate by Atomic Layer Deposition)

  • 이우재;김태현;권세훈
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.57-57
    • /
    • 2018
  • Zinc-oxide (ZnO), II-VI semiconductor with a wide and direct band gap (Eg: 3.2~3.4 eV), is one of the most potential candidates to substitute for ITO due to its excellent chemical, thermal stability, specific electrical and optoelectronic property. However, the electrical resistivity of un-doped ZnO is not low enough for the practical applications. Therefore, a number of doped ZnO films have been extensively studied for improving the electrical conductivities. In this study, Ti-doped ZnO films were successfully prepared by atomic layer deposition (ALD) techniques. ALD technique was adopted to careful control of Ti doping concentration in ZnO films and to show its feasible application for 3D nanostructured TCO layers. Here, the structural, optical and electrical properties of the Ti-doped ZnO depending on the Ti doping concentration were systematically presented. Also, we presented 3D nanostructured Ti-doped ZnO layer by combining ALD and nanotemplate processes.

  • PDF

Cd, Ni, Zn로 오염된 퇴적물에 노출된 Neanthes arenaceodentata의 금속 생물축적, 사망 및 성장저해에 대한 Acid Volatile Sulfide(AVS) 영향 (The Influence of Acid Volatile Sulfide (AVS) on the Bioavailabiltiy and Toxicity of Cd, Ni, and Zn in Sediments to Marine Polychaete Neanthes Arenaceodentata)

  • 이종현;고철환
    • 한국해양학회지:바다
    • /
    • 제7권4호
    • /
    • pp.226-234
    • /
    • 2002
  • 퇴적물 내 황화물(acid volatile sulfide, AVS)이 저서 생물의 금속 생물 축적 및 독성 반응에 어떠한 영향을 미치는 지를 이해하기 위해서 해양 다모류인 Neanthes arenaceodentata를 이용한 퇴적물 노출실험을 수행하였다. 이를 위해서 세 개의 다른 AVS 농도군에 대조구를 포함한 다섯 개의 농도 구배로 Cd, Ni, Zn를 오염시킨 퇴적물에서 N. arenaceodentata를 20일간 배양한 후 실험생물의 체내 금속 축적량과 그에 따른 사망률 및 성장률을 조사하였다. N. arenaceodentata에 의한 금속의 생물축적은 Cd과 Zn의 경우 AVS 농도의 영향을 받아서 해수(overlying water, OW)내 용존 금속 농도에 비례해서 증가했다. Ni은 AVS농도에 영향을 받지 않고 퇴적물 내 금속(simultaneously extracted metals. SEM)농도에 비례해서 증가했다. N. arenaceodentata의 사망과 성장률 저해현상은 SEM과 AVS 간의 몰농도차가 영보다 큰 조건([SEM-AVS]>0)에서만 관찰되었는데 용존 Zn에 의한 결과로 추정되었다. OW-Zn의 20-d LC50값은 9.3(8.0$\pm$11.0) $\mu$M이었다. 사망률에 대한 체내 Zn 농도의 최소영향농도(LOEC)는 7.8 $\mu$mol/g이었고, 최대무영향농도(NOEC)는 6.2$\mu$mol/g이었다. 성장률 저해에 대한 체내 Zn 농도의 LOEC는 5.9$\mu$mol/g이었고, NOEC은5.1 $\mu$mol/g토이었다. 본 실험에서는 실험실 조건에서 인위적으로 오염시킨 퇴적물 내 Zn의 입자상 Zn 농도와 용존 Zn농도의 비 (K$_{d}$ )가 현장 퇴적물에 비해서 10배 정도 감소함으로써 결국 용존 Zn에 의한 독성이 과대평가된 것으로 보인다.

CBD 방법에 의해 제조된 ZnO 나노로드의 전기적 특성 (Electrical Property of ZnO Nanorods Grown by Chemical Bath Deposition)

  • 김진호;이미재;황종희;임태영
    • 한국재료학회지
    • /
    • 제22권12호
    • /
    • pp.664-668
    • /
    • 2012
  • ZnO nanorods were successfully fabricated on Zn foil by chemical bath deposition (CBD) method. The ZnO precursor concentration and immersion time affected the surface morphologies, structure, and electrical properties of the ZnO nanorods. As the precursor concentration increased, the diameter of the ZnO nanorods increased from ca. 50 nm to ca. 150 nm. The thicknesses of the ZnO nanorods were from ca. $1.98{\mu}m$ to ca. $2.08{\mu}m$. ZnO crystalline phases of (100), (002), and (101) planes of hexagonal wurtzite structure were confirmed by XRD measurement. The fabricated ZnO nanorods showed a photoluminescene property at 380 nm. Especially, the ZnO nanorods deposited for 6 h in solution with a concentration of 0.005M showed a stronger (101) peak than they did (100) or (002) peaks. In addition, these ZnO nanorods showed a good electrical property, with the lowest resistance among the four samples, because the nanorods were densely in contact and relatively without pores. Therefore, a ZnO nanorod substrate is useful as a highly sensitive biochip substrate to detect biomolecules using an electrochemical method.