DOI QR코드

DOI QR Code

Characterization of ZnO Nanorods and SnO2-CuO Thin Film for CO Gas Sensing

  • Lim, Jae-Hwan (Department of Information and Communication Engineering, Pukyong National University) ;
  • Ryu, Jee-Youl (Department of Information and Communication Engineering, Pukyong National University) ;
  • Moon, Hyung-Sin (Bump Engineering Team, DDI Engineering Group, Nepes Corporation) ;
  • Kim, Sung-Eun (MEMS/NANO Fabrication Center) ;
  • Choi, Woo-Chang (MEMS/NANO Fabrication Center)
  • Received : 2012.06.05
  • Accepted : 2012.11.14
  • Published : 2012.12.25

Abstract

In this study, ZnO nanorods and $SnO_2$-CuO heterogeneous oxide were grown on membrane-type gas sensor platforms and the sensing characteristics for carbon monoxide (CO) were studied. Diaphragm-type gas sensor platforms with built-in Pt micro-heaters were made using a conventional bulk micromachining method. ZnO nanorods were grown from ZnO seed layers using the hydrothermal method, and the average diameter and length of the nanorods were adjusted by changing the concentration of the precursor. Thereafter, $SnO_2$-CuO heterogeneous oxide thin films were grown from evaporated Sn and Cu thin films. The average diameters of the ZnO nanorods obtained by changing the concentration of the precursor were between 30 and 200 nm and the ZnO nanorods showed a sensitivity value of 21% at a working temperature of $350^{\circ}C$ and a carbon monoxide concentration of 100 ppm. The $SnO_2$-CuO heterogeneous oxide thin films showed a sensitivity value of 18% at a working temperature of $200^{\circ}C$ and a carbon monoxide concentration of 100 ppm.

Keywords

References

  1. C. Lu, Z. Chen, and V. Singh, Sensor. Actuat. B 146, 145 (2010) [DOI: 10.1016/j.snb.2010.02.034]
  2. S. Santra, P. K. Guha, S. Z. Ali, P. Hiralal, H. E. Unalan, J. A. Convington, G. A. J. Amaratunga, W. I. Milne, J. W. Gardner, and F. Udrea, Sensor. Actuat. B 146, 559(2010) [DOI: 10.1016/j.snb.2010.01.009]
  3. L. V. Thong, N. D. Hoa, D. T. Thanh Le, D. T. Viet, P. D. Tam, A. T. Le, and N. V. Hieu, Sensor. Actuat. B 146, 361 (2010) [DOI: 10.1016/j.snb.2010.02.054]
  4. K. Chatterjee, S. Chatterjee, A. Banerjee, M. Raut, N. C. Pal, A. Sen, and H. S. Maiti, Mater. Chem. Phys. 81, 33 (2003) [DOI: 10.1016/S0254-0584(03)00145-7]
  5. S. H. Hahn, N. Barsan, and U. Weimar, Sensor. Actuat. B 78, 64 (2001) [DOI: 10.1016/S0925-4005(01)00792-4]
  6. D. Kohl, J. Phys. D: Appl. Phys. 34, 125 (2001) [DOI: 10.1088/0022-3727/34/19/201]
  7. J. Puigcorbe, D. Vogel, B. Michel, A. Vila, I. Gracia, C. Cane and J. R. Morante, J. Micromech. Microeng. 13, 548 (2003) [DOI: 10.1088/0960-1317/13/5/304]
  8. K. D. Mitzner, J. Sternhagen, and D. W. Galipeau, Sensor. Actuat. B 93, 92 (2003) [DOI: 10.1016/S0925-4005(03)00244-2]
  9. J. S. Suehle, R. E. Cavicchi, M. Gaitan, and S. Semancik, IEEE Electr. Device L. 14, 118 (1993) [DOI: 10.1109/55.215130]
  10. J. A. Salcedo, J. J. Liou, M. Y. Afridi, and A. R. Hefner Jr, Microelectron. Reliab. 46, 1285 (2006) [DOI: 10.1016/j.microrel.2005.12.002]
  11. X. Lafontan, F. Pressecq, F. Beaudoin, S. Rigo, M. Dardalhonb, J. L. Rouxb, P. Schmittb, J. Kuchenbeckerb, B. Baradatb, D. Lellouchia, C. Le-Touzea, and J. M. Nicotb, Microelectron. Reliab. 43, 1061 (2003) [DOI: 10.1016/S0026-2714(03)00120-3]
  12. E. Comini, G. Faglia, G. Sberveglieri, Z. Pan, and Z. L. Wang, Appl. Phys. Lett. 81, 1869 (2002) [DOI: 10.1063/1.1504867]
  13. Z. L. Wang, Adv. Mater 15, 432 (2003) [DOI: 10.1002/adma.200390100]
  14. C. M. Carney, S. Yoo, and S. A. Akbar, Sensor. Actuat. B 108, 29 (2005) [10.1016/j.snb.2004.11.058]
  15. N. Yamazoe, J. Fuchigami, M. Kishikawa, and T. Seiyama, Surf. Sci. 86, 335 (1979) [DOI: 10.1016/0039-6028(79)90411-4]

Cited by

  1. Composite materials based on nanostructured zinc oxide vol.48, pp.4, 2014, https://doi.org/10.1134/S1063782614040022
  2. Sensing Characteristics of Nanostructured SnO 2 Thin Films as Glucose Sensor vol.119, 2017, https://doi.org/10.1016/j.egypro.2017.07.056