• 제목/요약/키워드: Zirconia surface

검색결과 396건 처리시간 0.025초

Comparative analysis on intaglio surface trueness, wear volume loss of antagonist, and fracture resistance of full-contour monolithic zirconia crown for single-visit dentistry under simulated mastication

  • Kim, Yong-Kyu;Yoon, Hyung-In;Kim, Dae-Joon;Han, Jung-Suk
    • The Journal of Advanced Prosthodontics
    • /
    • 제14권3호
    • /
    • pp.173-181
    • /
    • 2022
  • PURPOSE. This analysis aimed to evaluate the intaglio surface trueness, antagonist's wear volume loss, and fracture resistance of full-contour crowns of (Y, Nb)-stabilized fully-sintered zirconia (FSZ), 4 mol% or 5 mol% yttria-stabilized partially sintered zirconia (4YZ or 5YZ) with high-speed sintering. MATERIALS AND METHODS. A total of 42 zirconia crowns were separated into three groups: FSZ, 4YZ, and 5YZ (n = 14). The intaglio surface trueness of the crowns was evaluated at the inner surface, occlusal, margin, and axial areas and reported as root-mean-square, positive and negative average deviation. Half of the specimens were aged for 120,000 cycles in the chewing simulator, and the wear volume loss of antagonist was measured. Before and after chewing, the fracture load was measured for each group. The trueness values were analyzed with Welch's ANOVA, and the wear volume loss with the Kruskal-Wallis tests. Effect of the zirconia type and aging on fracture resistance of crowns was tested using two-way ANOVA. RESULTS. The intaglio surface trueness measured at four different areas of the crown was less than 50 ㎛, regardless of the type of zirconia. No significant P in wear volume loss of antagonists were detected among the groups (P > .05). Both the type of zirconia and aging showed statistically significant effects on fracture resistance (P < .05). CONCLUSION. The full-contour crowns of FSZ as well as 4YZ or 5YZ with high-speed sintering were clinically acceptable, in terms of intaglio surface trueness, antagonist's wear volume loss, and fracture resistance after simulated mastication.

Effect of ${\gamma}$-Ray Irradiation on Surface Oxidation of Ultra High Molecular Weight Polyethylene/Zirconia Composite Prepared by in situ Ziegler-Natta Polymerization

  • Kwak, Soon-Jong;Noh, Dong-Il;Chun, Heung-Jae;Lim, Youn-Mook;Nho, Young-Chang;Jang, Ju-Woong;Shim, Young-Bock
    • Macromolecular Research
    • /
    • 제17권8호
    • /
    • pp.603-608
    • /
    • 2009
  • Novel ultra-high molecular weight polyethylene (UHMWPE)/zirconia composites were previously prepared by the in situ polymerization of ethylene using a Ti-based Ziegler-Natta catalyst supported on to the surface of zirconia, as a bearing material for artificial joints. Tribological tests revealed that a uniform dispersion of zirconia in UHMWPE markedly increased the wear resistance. The effects of zirconia content on the oxidation behavior of the ${\gamma}$-ray-treated UHMWPE/zirconia composite surfaces were examined. The oxidation index that estimates the oxidation degree as the content of total carbonyl compounds was monitored using Fourier transform infrared spectroscopy-attenuated total reflectance. The changes in the surface composition due to the oxidation were confirmed by electron spectroscopy for chemical analysis. The extent of oxidation decreased with increasing zirconia content, which was attributed to the increased crystallinity as well as the decreased polymer portion of the UHMWPE/zirconia composites.

Resin bonding of metal brackets to glazed zirconia with a porcelain primer

  • Lee, Jung-Hwan;Lee, Milim;Kim, Kyoung-Nam;Hwang, Chung-Ju
    • 대한치과교정학회지
    • /
    • 제45권6호
    • /
    • pp.299-307
    • /
    • 2015
  • Objective: The aims of this study were to compare the shear bond strength between orthodontic metal brackets and glazed zirconia using different types of primer before applying resin cement and to determine which primer was more effective. Methods: Zirconia blocks were milled and embedded in acrylic resin and randomly assigned to one of four groups: nonglazed zirconia with sandblasting and zirconia primer (NZ); glazed zirconia with sandblasting, etching, and zirconia primer (GZ); glazed zirconia with sandblasting, etching, and porcelain primer (GP); and glazed zirconia with sandblasting, etching, zirconia primer, and porcelain primer (GZP). A stainless steel metal bracket was bonded to each target surface with resin cement, and all specimens underwent thermal cycling. The shear bond strength of the specimens was measured by a universal testing machine. A scanning electron microscope, three-dimensional optical surface-profiler, and stereoscopic microscope were used to image the zirconia surfaces. The data were analyzed with one-way analyses of variance and the Fisher exact test. Results: Group GZ showed significantly lower shear bond strength than did the other groups. No statistically significant differences were found among groups NZ, GP, and GZP. All specimens in group GZ showed adhesive failure between the zirconia and resin cement. In groups NZ and GP, bonding failed at the interface between the resin cement and bracket base or showed complex adhesive and cohesive failure. Conclusions: Porcelain primer is the more appropriate choice for bonding a metal bracket to the surface of a full-contour glazed zirconia crown with resin cement.

표면처리와 열처리가 전장도재와 지르코니아의 결합력에 미치는 영향 (Effect of surface and heat treatment on the bond strength of veneering ceramics to zirconia(Y-TZP))

  • 이정환;안재석
    • 대한치과기공학회지
    • /
    • 제35권4호
    • /
    • pp.271-280
    • /
    • 2013
  • Purpose: This study was to assess the effect of surface and heat treatment on the bond strength of veneering ceramics to zirconia. Methods: The specimens were divided into 7 groups according to surface treatment and heat treatment conditions prior to porcelain application. ten specimens from each group were subjected to a 3-point flexural test. In addition the influence of surface and heat treatment on surface roughness values and phase transformation of zirconia was evaluated. Statistical analysis was performed with one-way ANOVA and post hoc Tukey's test. Results: Bond strength ranged from $20.67{\pm}3.13MPa$ to $32.69{\pm}4.52$. Bond strength of surface treatment group was lower than that of control group but only $Al_2O_3$ sandblasting group was significant difference. Bond strength of heat treatment group was higher than that of surface treatment group but there was no statistical significance. Conclusion: Bond strength of veneering ceramics to zirconia was affected by surface and heat treatment.

지르코니아와 레진 시멘트의 결합 (Bonding to zirconia with resin cements)

  • 임범순;허수복
    • 대한치과의사협회지
    • /
    • 제49권5호
    • /
    • pp.265-278
    • /
    • 2011
  • The introduction of zirconia-based materials to the dental field broadened the design and application limits of, all-ceramic restorations. Most ceramic restorations are adhesively luted to the prepared tooth, however, resin bonding to zirconia components is less reliable than those to other dental ceramic systems. It is important for high retention, prevention of microleakage, and increased fracture resistance, that bonding techniques be improved for zirconia systems. Strong resin bonding relies on micromechanical interlocking and adhesive chemical bonding to the ceramic surface, requiring surface roughening for mechanical bonding and surface activation for chemical adhesion. In many cases, high strength ceramic restorations do not require adhesive bonding to tooth structure and can be placed using conventional cements which rely only on micromechanical retention. However, resin bonding is desirable in some clinical situations. In addition, it is likely that strong chemical adhesion would lead to enhanced long-term fracture and fatigue resistance in the oral environment.

지르코니아 표면 가공에 따른 상변이 (Phase transition of Zirconia by surface treatments)

  • 이정수;심정석;정형호
    • 대한치과기공학회지
    • /
    • 제32권2호
    • /
    • pp.57-63
    • /
    • 2010
  • Purpose : This study aimed to find out the effects of treatments on the surface of Zirconia. Methods : To this end, we selected six treatments that have been used widely: steam cleaning, 2bar & 6bar sand blasting, grinding by green stone point, grinding by diamond bur, and grinding by diamond bur with water spray. Results : The results of our study showed that monoclinic rate increased from all six treatments. Monoclinic rate varied by treatments, ranged from 0.6% (steam cleaning) to 6.5% (6bar sand blasting). These values from all six treatments were below ISO 13356 standard, which is 25%. Also, we found that two treatments (green stone point and diamond bur) increased roughness of surface of Zirconia. Conclusion : This study concluded that phase changes of Zirconia were not significant by using six treatments we employed.

지르코니아 표면에칭처리와 저온열화현상이 지르코니아와 전장도재의 결합강도에 미치는 영향 (Effects on Bond Strength between Zirconia and Porcelain according to Etching Treatment and Low Temperature Degradation)

  • 박진영;김재홍;김웅철;김지환;김혜영
    • 치위생과학회지
    • /
    • 제14권2호
    • /
    • pp.140-149
    • /
    • 2014
  • 본 연구에서는 지르코니아 에칭에 의한 표면변화가 지르코니아 코어와 도재 사이의 결합강도에 미치는 영향을 조사하기 위해 전단결합강도 실시하였고, 표면의 변화를 관찰하기 위한 SEM 측정, 에칭처리에 따른 지르코니아의 성분변화를 알아보기 위해 EDS 분석을 실시하였다. 그리고 구강상태에서 15~20년의 저온열화현상을 재현하기 위해 저온 열화 처리를 시행하여 전단결합강도 평가를 실시하여 다음과 같은 결과가 도출되었다. 1. 에칭처리를 시행하지 않은 시편과 에칭처리를 시행한 시편의 전단결합강도를 비교할 경우 에칭한 시편의 전단결합강도가 큰 것을 알 수 있다. 이는 에칭용액이 지르코니아코어 표면에 interlocking을 형성하여 기계적인 결합을 높여 주었을 것이라고 생각된다. 2. 전단결합강도의 결과(EZ>AEZ>NEZ>ANEZ)를 보았을 때 통계적으로는 유의한 차이를 보였으며, 저온열화처리를 하지 않고 에칭처리를 한 EZ군이 전단결합강도가 가장 큰 것을 알 수 있었다. 또한 파절 양상에서도 EZ군에서만 응집파절을 보여 가장 결합강도가 높다는 결과를 도출할 수 있다. 결론적으로 저온열화처리 여부에 관계없이 표면에칭처리를 한 시편의 전단결합강도가 큰 것으로 나타나 지르코니아 표면의 에칭처리로 인한 interlocking의 형성이 기계적인 결합을 향상시키는 요인이 되었다고 생각된다.

Initial bacterial adhesion on resin, titanium and zirconia in vitro

  • Lee, Byung-Chul;Jung, Gil-Yong;Kim, Dae-Joon;Han, Jung-Suk
    • The Journal of Advanced Prosthodontics
    • /
    • 제3권2호
    • /
    • pp.81-84
    • /
    • 2011
  • PURPOSE. The aim of this in vitro study was to investigate the adhesion of initial colonizer, Streptococcus sanguis, on resin, titanium and zirconia under the same surface polishing condition. MATERIALS AND METHODS. Specimens were prepared from Z-250, cp-Ti and 3Y-TZP and polished with $1 {\mu}m$ diamond paste. After coating with saliva, each specimen was incubated with Streptococcus sanguis. Scanning electron microscope, crystal violet staining and measurement of fluorescence intensity resulting from resazurin reduction were performed for quantifying the bacterial adhesion. RESULTS. Surface of resin composite was significantly rougher than that of titanium and zirconia, although all tested specimens are classified as smooth. The resin specimens showed lower value of contact angle compared with titanium and zirconia specimens, and had hydrophilic surfaces. The result of scanning electron microscopy demonstrated that bound bacteria were more abundant on resin in comparison with titanium and zirconia. When total biofilm mass determined by crystal violet, absorbance value of resin was significantly higher than that of titanium or zirconia. The result of relative fluorescence intensities also demonstrated that the highest fluorescence intensity was found on the surface of resin. Absorbance value and fluorescence intensity on titanium was not significantly different from those on zirconia. CONCLUSION. Resin specimens showed the roughest surface and have a significantly higher susceptibility to adhere Streptococcus sanguis than titanium and zirconia when surfaces of each specimen were polished under same condition. There was no significant difference in bacteria adhesion between titanium and zirconia in vitro.

Comparison of shear bond strength of orthodontic brackets using various zirconia primers

  • Lee, Ji-Yeon;Kim, Jin-Seok;Hwang, Chung-Ju
    • 대한치과교정학회지
    • /
    • 제45권4호
    • /
    • pp.164-170
    • /
    • 2015
  • Objective: The aim of this study was to compare the shear bond strength (SBS) of orthodontic brackets bonded to zirconia surfaces using three different zirconia primers and one silane primer, and subjected to thermocycling. Methods: We designed 10 experimental groups following the surface treatment and thermocycling. The surface was treated with one of the following method: no-primer (NP), Porcelain Conditioner (PC), Z-PRIME Plus (ZP), Monobond Plus (MP) and Zirconia Liner Premium (ZL) (n=20). Then each group was subdivided to non-thermocycled and thermocycled groups (NPT, PC, ZPT, MPT, ZLT) (n=10). Orthodontic brackets were bonded to the specimens using $Transbond^{TM}$ XT Paste and light cured for 15 s at $1,100mW/cm^2$. The SBS was measured at a 1 mm/min crosshead speed. The failure mode was assessed by examination with a stereomicroscope and the amount of bonding resin remaining on the zirconia surface was scored using the modified adhesive remnant index (ARI). Results: The SBS of all experimental groups decreased after thermocycling. Before thermocycling, the SBS was ZL, $ZP{\geq}MP{\geq}PC>NP$ but after thermocycling, the SBS was $ZLT{\geq}MPT{\geq}ZPT>PCT=NPT$ (p > 0.05). For the ARI score, both of the groups lacking primer (NP and NPT) displayed adhesive failure modes, but the groups with zirconia primers (ZP, ZPT, MP, MPT, ZL, and ZLT) were associated with mixed failure modes. Conclusions: Surface treatment with a zirconia primer increases the SBS relative to no-primer or silane primer application between orthodontic brackets and zirconia prostheses.

Effects of different finishing/polishing protocols and systems for monolithic zirconia on surface topography, phase transformation, and biofilm formation

  • Mai, Hang-Nga;Hong, Su-Hyung;Kim, Sung-Hun;Lee, Du-Hyeong
    • The Journal of Advanced Prosthodontics
    • /
    • 제11권2호
    • /
    • pp.81-87
    • /
    • 2019
  • PURPOSE. The purpose of this study was to evaluate the effects of various protocols and systems for finishing and polishing monolithic zirconia on surface topography, phase transformation, and bacterial adhesion. MATERIALS AND METHODS. Three hundred monolithic zirconia specimens were fabricated and then treated with three finishing and polishing systems (Jota [JO], Meisinger [ME], and Edenta [ED]) using four surface treatment protocols: coarse finishing alone (C); coarse finishing and medium polishing (CM); coarse finishing and fine polishing (CF); and coarse finishing, medium polishing, and fine polishing (CMF). Surface roughness, crystal phase transformation, and bacterial adhesion were evaluated using atomic force microscopy, X-ray diffraction, and streptococcal biofilm formation assay, respectively. One-way and two-way analysis of variance with Tukey post hoc tests were used to analyze the results (${\alpha}=.05$). RESULTS. In this study, the surface treatment protocols and systems had significant effects on the resulting roughness. The CMF protocol produced the lowest roughness values, followed by CM and CF. Use of the JO system produced the lowest roughness values and the smallest biofilm mass, while the ME system produced the smallest partial transformation ratio. The ED group exhibited the highest roughness values, biofilm mass, and partial transformation ratio. CONCLUSION. Stepwise surface treatment of monolithic zirconia, combined with careful polishing system selection, is essential to obtaining optimal microstructural and biological surface results.