• 제목/요약/키워드: Zirconia beads

검색결과 9건 처리시간 0.017초

50μm급 이트리아 안정화 지르코니아 비드의 미세구조 및 마모 조건에 따른 마모율 분석 (Analysis of Attrition Rate of 50μm Size Y2O3 Stabilized Zirconia Beads with Different Microstructure and Test Conditions)

  • 김정환;윤세중;한병동;안철우;윤운하;최종진
    • 한국재료학회지
    • /
    • 제29권4호
    • /
    • pp.233-240
    • /
    • 2019
  • This study analyzes the mechanical properties, including the attrition rate, of $50{\mu}m$ size yttria-stabilized zirconia (YSZ) beads with different microstructures and high-energy milling conditions. The yttria distribution in the grain and grain-boundary of the fully sintered beads relates closely to Vickers hardness and the attrition rate of the YSZ beads. Grain size, fractured surfaces, and yttrium distribution are analyzed by electronic microscopes. For standardization and a reliable comparison of the attrition rate of zirconia beads with different conditions, Zr content in milled ceramic powder is analyzed and calculated by X-ray Fluorescence Spectrometer(XRF) instead of directly measuring the weight change of milled YSZ beads. The beads with small grain sizes sintered at lower temperature exhibit a higher Vickers hardness and lower attrition rate. The attrition rate of $50{\mu}m$ YSZ beads is measured and compared with the various materials properties of ceramic powders used for high-energy milling. The attrition rate of beads appears to be closely related to the Vickers hardness of ceramic materials used for milling, and demonstrates more than a 10 times higher attrition rate with Alumina(Hv ~1650) powder than $BaTiO_3$ powder (Hv ~315).

고에너지 분쇄 매체 지르코니아 Beads의 미세구조 및 기계적 특성에 따른 마모율 분석 (Analysis of Attrition Rate of Y2O3 Stabilized Zirconia Beads with Different Microstructure and Mechanical Properties)

  • 김정환;윤세중;한병동;안철우;윤운하;최종진
    • 한국재료학회지
    • /
    • 제28권6호
    • /
    • pp.349-354
    • /
    • 2018
  • Particle size reduction is an important step in many technological operations. The process itself is defined as the mechanical breakdown of solids into smaller particles to increase the surface area and induce defects in solids, which are needed for subsequent operations such as chemical reactions. To fabricate nano-sized particles, several tens to hundreds of micron size ceramic beads, formed through high energy milling process, are required. To minimize the contamination effects during high-energy milling, the mechanical properties of zirconia beads are very important. Generally, the mechanical properties of $Y_2O_3$ stabilized tetragonal zirconia beads are closely related to the mechanism of phase change from tetragonal to monoclinic phase via external mechanical forces. Therefore, $Y_2O_3$ distribution in the sintered zirconia beads must also be closely related with the mechanical properties of the beads. In this work, commercially available $100{\mu}m-size$ beads are analyzed from the point of view of microstructure, composition homogeneity (especially for $Y_2O_3$), mechanical properties, and attrition rate.

Three Dimensionally Ordered Microstructure of Polycrystalline Zirconia Ceramics with Micro-Porosity

  • Chang, Myung Chul
    • 한국세라믹학회지
    • /
    • 제53권1호
    • /
    • pp.50-55
    • /
    • 2016
  • In order to make a highly ordered three-dimensionally macro-porous structure of zirconia ceramics, porogen precursors PMMA beads were prepared by emulsion polymerization using acrylic monomer. The monodisperse PMMA latex beads were closely packed by centrifugation as a porogen template for the infiltration of zirconium acetate solution. The mixed compound of PMMA and zirconium acetate was dried. According to the firing schedule, dry compacts of PMMA and zirconium acetate were calcined at $475^{\circ}C$ to obtain micro-, macro-, and meso- structures of polycrystalline zirconia with monodispersed porosity. Inorganic frameworks composed of $ZrO_2$ were formed and showed a three Dimensionally Ordered Microstructure [3DOM] of $ZrO_2$ ceramics. The obtained $ZrO_2$ skeleton was calcined at $710^{\circ}C$. The 3DOM $ZrO_2$ skeleton showed color tuning in solutions such as deionized [DI] $H_2O$ and/or methanol. The monodispersed crystalline micro-structure with micro/meso porosity was observed by FE-SEM.

The Disruption of Saccharomyces cerevisiae Cells and Release of Glucose 6-Phosphate Dehydrogenase (G6PDH) in a Horizontal Dyno Bead Mill Operated in Continuous Recycling Mode

  • Mei Chow Yen;Ti Tey Beng;Ibrahim Mohammad Nordin;Ariff Arbakariya;Chuan Ling Tau
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권3호
    • /
    • pp.284-288
    • /
    • 2005
  • Baker's yeast was disrupted in a 1.4-L stainless steel horizontal bead mill under a continuous recycle mode using 0.3 mm diameter zirconia beads as abrasive. A single pass in continuous mode bead mill operation liberates half of the maximally released protein. The maximum total protein release can only be achieved after passaging the cells 5 times through the disruption chamber. The degree of cell disruption was increased with the increase in feeding rate, but the total protein release was highest at the middle range of feeding rate (45 L/h). The total protein release was increased with an increase in biomass concentration from 10 to $50\%$(w/v). However, higher heat dissipation as a result of high viscosity of concentrated biomass led to the denaturation of labile protein such as glucose 6-phosphate dehydrogenase (G6PDH). As a result the highest specific activity of G6PDH was achieved at biomass concentration of $20\%$(ww/v). Generally, the degree of cell disruption and total protein released were increased with an increase in impeller tip speed, but the specific activity of G6PDH was decreased substantially at higher impeller tip speed (14 m/s). Both the degree of cell disruption and total protein release increased, as the bead loading increased from 75 to $85\% (v/v)$. Hence, in order to obtain a higher yield of labile protein such as G6PDH, the yeast cell should not be disrupted at biomass concentration and impeller tip speed higher than $20\%(w/v)$ and 10 m/s, respectively.

흄드실리카로부터 제조된 실리카졸의 분산인자 상관성 연구 (Correlation Research of Dispersion Factors on the Silica Sol Prepared from Fumed Silica)

  • 박민경;김훈;임형미;최진섭;김대성
    • 한국재료학회지
    • /
    • 제26권3호
    • /
    • pp.136-142
    • /
    • 2016
  • To study the dispersion factors of silica sol prepared from fumed silica powder, we prepared silica sol under an aqueous system using a batch type bead mill. The dispersion properties of silica sol have a close relationship to dispersion factors such as pH, milling time and speed, the size and amount of zirconia beads, the solid content of fumed silica, and the shape and diameter of the milling impellers. Especially, the silica particles in silica sol were found to show dispersion stability on a pH value above 7, due to the electrostatic repulsion between the particles having a high zeta potential value. The shape and diameter of the impellers installed in the bead mill for the dispersion of fumed silica was very important in reducing the particle size of the aggregated silica. The median particle size ($D_{50}$) of silica sol obtained after milling was also optimized according to the variation of the size and amount of the zirconia beads that were used as the grinding medium, and according to the solid content of fumed silica. The dispersion properties of silica sol were investigated using zeta potential, turbiscan, particle size analyzer, and transmission electron microscopy.

Thermal Oxidative Purification of Detonation Nanodiamond in a Gas-Solid Fluidized Bed Reactor

  • Lee, Jae Hoon;Youn, Yong Suk;Lee, Dong Hyun
    • Korean Chemical Engineering Research
    • /
    • 제56권5호
    • /
    • pp.738-751
    • /
    • 2018
  • The effect of the reaction temperature and reaction time on the thermal oxidative purification quality of detonation nanodiamond (NDsoot) was investigated in a gas-solid fluidized bed reactor of a $0.10m-ID{\times}1.0m$-high stainless steel column with zirconia beads ($d_{SV}=99.2{\mu}m$). The carbon conversion increased with increasing the reaction temperature; however, when the reaction temperature was greater than 773 K, the carbon conversion did not increase. The content of $sp^3$-hybridized carbon at the reaction temperature of 703 K barely changed when the reaction time was more than 30 minutes, but at 773 K, the content decreased as preferred. At 703 K, the purification quality increased with the increasing reaction time; however, at 773 K, the purification quality increased up to 30 minutes and then decreased rapidly.

피복입자핵연료에서 증착조건이 탄화규소층의 특성에 미치는 영향 (Effect of Deposition Parameters on the Property of Silicon Carbide Layer in Coated Particle Nuclear Fuels)

  • 김연구;김원주;여승환;조문성
    • 한국분말재료학회지
    • /
    • 제23권5호
    • /
    • pp.384-390
    • /
    • 2016
  • Tri-isotropic (TRISO) coatings on zirconia surrogate beads are deposited using a fluidized-bed vapor deposition (FB-CVD) method. The silicon carbide layer is particularly important among the coated layers because it acts as a miniature pressure vessel and a diffusion barrier to gaseous and metallic fission products in the TRISO-coated particles. In this study, we obtain a nearly stoichiometric composition in the SiC layer coated at $1400^{\circ}C$, $1500^{\circ}C$, and $1400^{\circ}C$ with 20 vol.% methyltrichlorosilane (MTS), However, the composition of the SiC layer coated at $1300-1350^{\circ}C$ shows a difference from the stoichiometric ratio (1:1). The density decreases remarkably with decreasing SiC deposition temperature because of the nanosized pores. The high density of the SiC layer (${\geq}3.19g/cm^2$) easily obtained at $1500^{\circ}C$ and $1400^{\circ}C$ with 20 vol.% MTS did not change at an annealing temperature of $1900^{\circ}C$, simulating the reactor operating temperature. The evaluation of the mechanical properties is limited because of the inaccurate values of hardness and Young's modulus measured by the nano-indentation method.

수직(垂直)컬럼형(形) 풍력선별기(風力選別機)의 분리효율향상(分離效率向上)을 위한 bypass유로(流路)의 적용(適用) (Application of Bypass Flow for Improving Performance of the Vertical Column Pneumatic Separator)

  • 이계승;송영준;요츠모토 히로키
    • 자원리싸이클링
    • /
    • 제22권3호
    • /
    • pp.65-72
    • /
    • 2013
  • 수직컬럼형 풍력선별기의 선별능력을 향상시키기 위해 일시적인 중광(middling)의 흐름을 형성할 수 있는 측로(bypass)를 선별컬럼의 중앙에 설치하였다. 측로를 흐름을 조절하여 주선별컬럼에서 상부흐름의 속도는 가벼운 물질만이 상부로 회수하도록 설정하고 하부흐름의 속도는 무거운 물질만이 하부로 회수되도록 설정하였다. 측로로 이동하는 흐름은 사이클론을 통과시켜 중광이 피더로 회수되도록 하였다. 일반 수직컬럼형 풍력선별기와 개조된 선별기에서 유리와 지르코니아 비드(bead)의 혼합물을 사용하여 성능향상의 효과를 실험하였다.

비수계 용매하에서 다양한 분산인자 및 실란 표면개질에 의해 제조된 Al2O3 나노졸의 분산 특성 (Dispersion Property of Al2O3 Nanosol Prepared by Various Dispersion Factors and Silane Modification under Non-Aqueous Solvent)

  • 나호성;박민경;임형미;김대성
    • 한국재료학회지
    • /
    • 제26권12호
    • /
    • pp.733-740
    • /
    • 2016
  • $Al_2O_3$ nanosol dispersed under ethanol or N-Methyl-2-pyrrolidone(NMP) was studied and optimized with various dispersion factors and by utilizing the silane modification method. The two kinds of $Al_2O_3$ powders used were prepared by thermal decomposition method from aluminum ammonium sulfate$(AlNH_4(SO_4)_2)$ while controlling the calcination temperature. $Al_2O_3$ sol was prepared under ethanol solvent by using a batch-type bead mill. The dispersion properties of the $Al_2O_3$ sol have a close relationship to the dispersion factors such as the pH, the amount of acid additive(nitric acid, acetic acid), the milling time, and the size and combination of zirconia beads. Especially, $Al_2O_3$ sol added 4 wt% acetic acid was found to maintain the dispersion stability while its solid concentration increased to 15 wt%, this stability maintenance was the result of the electrostatic and steric repulsion of acetic acid molecules adsorbed on the surface of the $Al_2O_3$ particles. In order to observe the dispersion property of $Al_2O_3$ sol under NMP solvent, $Al_2O_3$ sol dispersed under ethanol solvent was modified and solvent-exchanged with N-Phenyl-(3-aminopropyl)trimethoxy silane(APTMS) through a binary solvent system. Characterization of the $Al_2O_3$ powder and the nanosol was observed by XRD, SEM, ICP, FT-IR, TGA, Particles size analysis, etc.