DOI QR코드

DOI QR Code

피복입자핵연료에서 증착조건이 탄화규소층의 특성에 미치는 영향

Effect of Deposition Parameters on the Property of Silicon Carbide Layer in Coated Particle Nuclear Fuels

  • 김연구 (한국원자력연구원 차세대핵연료개발부) ;
  • 김원주 (한국원자력연구원 차세대핵연료개발부) ;
  • 여승환 (한국원자력연구원 차세대핵연료개발부) ;
  • 조문성 (한국원자력연구원 차세대핵연료개발부)
  • Kim, Yeon-Ku (Advanced Fuel Technology Development Division, KAERI) ;
  • Kim, Weon-Ju (Advanced Fuel Technology Development Division, KAERI) ;
  • Yeo, SungHwan (Advanced Fuel Technology Development Division, KAERI) ;
  • Cho, Moon Sung (Advanced Fuel Technology Development Division, KAERI)
  • 투고 : 2016.09.13
  • 심사 : 2016.10.17
  • 발행 : 2016.10.28

초록

Tri-isotropic (TRISO) coatings on zirconia surrogate beads are deposited using a fluidized-bed vapor deposition (FB-CVD) method. The silicon carbide layer is particularly important among the coated layers because it acts as a miniature pressure vessel and a diffusion barrier to gaseous and metallic fission products in the TRISO-coated particles. In this study, we obtain a nearly stoichiometric composition in the SiC layer coated at $1400^{\circ}C$, $1500^{\circ}C$, and $1400^{\circ}C$ with 20 vol.% methyltrichlorosilane (MTS), However, the composition of the SiC layer coated at $1300-1350^{\circ}C$ shows a difference from the stoichiometric ratio (1:1). The density decreases remarkably with decreasing SiC deposition temperature because of the nanosized pores. The high density of the SiC layer (${\geq}3.19g/cm^2$) easily obtained at $1500^{\circ}C$ and $1400^{\circ}C$ with 20 vol.% MTS did not change at an annealing temperature of $1900^{\circ}C$, simulating the reactor operating temperature. The evaluation of the mechanical properties is limited because of the inaccurate values of hardness and Young's modulus measured by the nano-indentation method.

키워드

참고문헌

  1. P. Hoseman, J.N. Martos and D. Frazer: J. Nuclear Mater., 442 (2013) 133. https://doi.org/10.1016/j.jnucmat.2013.08.041
  2. J. Powers and B.Wirth: J. Nuclear Mater., 405 (2010) 74. https://doi.org/10.1016/j.jnucmat.2010.07.030
  3. D.A. Petti, J.T. Maki and J. Buongiorno: INEIL/EXT-02-00300.
  4. Schlichting: Powder Metall. Int., 12 (1980) 196.
  5. Von Muench: J. Electrochem. Soc., 125 (1978) 294. https://doi.org/10.1149/1.2131431
  6. Stinton, D.P and Lackey, W.J: Ceram. Bull., 57 (1978) 568.
  7. Minato, K. and Fukuda, K: J. Nuclear Mater., 149 (1987) 233. https://doi.org/10.1016/0022-3115(87)90482-X
  8. E. Lopez-Honorato, J. Tan and P.J Meadows: J. Nuclear Mater., 392 (2009) 219. https://doi.org/10.1016/j.jnucmat.2009.03.013
  9. Y.J. Lee, D.J. Choi, J. Y. Park and W. Hong: J. Mater. Sci., 35 (2000) 4519. https://doi.org/10.1023/A:1004808418609
  10. E. Lopez-Honorato, P.J Meadows, J. Tan and P. Xiao: J. Mater. Res., 23 (2009) 1785.
  11. Zhao X, Langford RM, Xiao P: J. Amer Ceram Soc., 94 (2011) 3509. https://doi.org/10.1111/j.1551-2916.2011.04674.x
  12. Chollon G, Vallerot JM, Herlary: J. Eur Cerm Soc., 27 (2007) 1503. https://doi.org/10.1016/j.jeurceramsoc.2006.05.038
  13. D. Helary, O. Dugne and X. Bourrat: J. Nuclear mater., 350 (2006) 332. https://doi.org/10.1016/j.jnucmat.2006.01.010
  14. K.A. Appiah, Z.L. Wang and W.J. Lackey: Thin Solid Films., 371 (2000).
  15. L. Tan, T.R. Allen and J.D. Hunn: J. Nuclear Mater., 372 (2008) 400. https://doi.org/10.1016/j.jnucmat.2007.04.048
  16. D.A. Petti, J. Buongiorno and J.T. Maki: Nucl. Eng. Design., 222 (2003) 281. https://doi.org/10.1016/S0029-5493(03)00033-5
  17. S. Ray, C.Zorman, M. Mehregany, R. Deanna and C. Deeb: Appl. Phys., 99 (2006) 044108. https://doi.org/10.1063/1.2169875
  18. S. Nakashima and H. Harima: Phys. Status Solidi., 39 (1997) 162.
  19. M.D Allendorf and R.J Kee: J. Electrochem. Soc. 138 (1991) 841. https://doi.org/10.1149/1.2085688
  20. P. Krautwasser, G.M. Begun and Peter Angelini: J. Amer Ceram Soc., 66 (1983) 424. https://doi.org/10.1111/j.1151-2916.1983.tb10075.x
  21. E. Lopez-Honorato, C. Brigden, R.A. Shatwell, H.Zhang, I. Farnan and P. Xiao: J. Nuclear Mater., 433 (2013) 199. https://doi.org/10.1016/j.jnucmat.2012.08.047