Browse > Article
http://dx.doi.org/10.4150/KPMI.2016.23.5.384

Effect of Deposition Parameters on the Property of Silicon Carbide Layer in Coated Particle Nuclear Fuels  

Kim, Yeon-Ku (Advanced Fuel Technology Development Division, KAERI)
Kim, Weon-Ju (Advanced Fuel Technology Development Division, KAERI)
Yeo, SungHwan (Advanced Fuel Technology Development Division, KAERI)
Cho, Moon Sung (Advanced Fuel Technology Development Division, KAERI)
Publication Information
Journal of Powder Materials / v.23, no.5, 2016 , pp. 384-390 More about this Journal
Abstract
Tri-isotropic (TRISO) coatings on zirconia surrogate beads are deposited using a fluidized-bed vapor deposition (FB-CVD) method. The silicon carbide layer is particularly important among the coated layers because it acts as a miniature pressure vessel and a diffusion barrier to gaseous and metallic fission products in the TRISO-coated particles. In this study, we obtain a nearly stoichiometric composition in the SiC layer coated at $1400^{\circ}C$, $1500^{\circ}C$, and $1400^{\circ}C$ with 20 vol.% methyltrichlorosilane (MTS), However, the composition of the SiC layer coated at $1300-1350^{\circ}C$ shows a difference from the stoichiometric ratio (1:1). The density decreases remarkably with decreasing SiC deposition temperature because of the nanosized pores. The high density of the SiC layer (${\geq}3.19g/cm^2$) easily obtained at $1500^{\circ}C$ and $1400^{\circ}C$ with 20 vol.% MTS did not change at an annealing temperature of $1900^{\circ}C$, simulating the reactor operating temperature. The evaluation of the mechanical properties is limited because of the inaccurate values of hardness and Young's modulus measured by the nano-indentation method.
Keywords
Pyrolytic SiC; Fluidize-bed chemical vapor deposition; MTS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Hoseman, J.N. Martos and D. Frazer: J. Nuclear Mater., 442 (2013) 133.   DOI
2 J. Powers and B.Wirth: J. Nuclear Mater., 405 (2010) 74.   DOI
3 D.A. Petti, J.T. Maki and J. Buongiorno: INEIL/EXT-02-00300.
4 Schlichting: Powder Metall. Int., 12 (1980) 196.
5 Von Muench: J. Electrochem. Soc., 125 (1978) 294.   DOI
6 Stinton, D.P and Lackey, W.J: Ceram. Bull., 57 (1978) 568.
7 Minato, K. and Fukuda, K: J. Nuclear Mater., 149 (1987) 233.   DOI
8 E. Lopez-Honorato, J. Tan and P.J Meadows: J. Nuclear Mater., 392 (2009) 219.   DOI
9 Y.J. Lee, D.J. Choi, J. Y. Park and W. Hong: J. Mater. Sci., 35 (2000) 4519.   DOI
10 E. Lopez-Honorato, P.J Meadows, J. Tan and P. Xiao: J. Mater. Res., 23 (2009) 1785.
11 Zhao X, Langford RM, Xiao P: J. Amer Ceram Soc., 94 (2011) 3509.   DOI
12 Chollon G, Vallerot JM, Herlary: J. Eur Cerm Soc., 27 (2007) 1503.   DOI
13 D. Helary, O. Dugne and X. Bourrat: J. Nuclear mater., 350 (2006) 332.   DOI
14 K.A. Appiah, Z.L. Wang and W.J. Lackey: Thin Solid Films., 371 (2000).
15 L. Tan, T.R. Allen and J.D. Hunn: J. Nuclear Mater., 372 (2008) 400.   DOI
16 D.A. Petti, J. Buongiorno and J.T. Maki: Nucl. Eng. Design., 222 (2003) 281.   DOI
17 S. Ray, C.Zorman, M. Mehregany, R. Deanna and C. Deeb: Appl. Phys., 99 (2006) 044108.   DOI
18 S. Nakashima and H. Harima: Phys. Status Solidi., 39 (1997) 162.
19 M.D Allendorf and R.J Kee: J. Electrochem. Soc. 138 (1991) 841.   DOI
20 P. Krautwasser, G.M. Begun and Peter Angelini: J. Amer Ceram Soc., 66 (1983) 424.   DOI
21 E. Lopez-Honorato, C. Brigden, R.A. Shatwell, H.Zhang, I. Farnan and P. Xiao: J. Nuclear Mater., 433 (2013) 199.   DOI