• Title/Summary/Keyword: Zirconia Powder

Search Result 198, Processing Time 0.022 seconds

Effect of Zirconia Particle Addition on Curing Behavior of Phenolic Resins (Zirconia 입자의 첨가가 페놀 수지의 경화거동에 미치는 영향)

  • Yun, Jaeho;Kim, Hanjun;Lee, Jae Min;Kim, Jong Hee;Lee, Seung Goo
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.288-297
    • /
    • 2022
  • This study investigated the effect of addition of zirconia(zirconium oxide) powder on the curing behavior of phenolic resins. The heating rate controlled curing and isothermal curing behaviors of the phenol resin according to the content of the zirconia powder were analyzed. The viscosity and thermal decomposition characteristics of the phenolic resin with the zirconia content were also examind. From the DSC analysis, the degree of cure and the rate of cure were obtained. Finally, the activation energy for the cure reaction were calculated from the DSC data of the zirconia added phenolic resin. As a found, the higher the zirconia content, the longer the curing was delayed and the greater the activation energy required for curing. Additionally, the TGA result that as the content of zirconia increased, less weight loss was observed. The surface tackiness of the Carbon/Phenol prepreg was partially changed according to the zirconia content, but had no significant effect.

The effect of various sandblasting conditions on surface changes of dental zirconia and shear bond strength between zirconia core and indirect composite resin

  • Su, Naichuan;Yue, Li;Liao, Yunmao;Liu, Wenjia;Zhang, Hai;Li, Xin;Wang, Hang;Shen, Jiefei
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.3
    • /
    • pp.214-223
    • /
    • 2015
  • PURPOSE. To measure the surface loss of dental restorative zirconia and the short-term bond strength between an indirect composite resin (ICR) and zirconia ceramic after various sandblasting processes. MATERIALS AND METHODS. Three hundred zirconia bars were randomly divided into 25 groups according to the type of sandblasting performed with pressures of 0.1, 0.2, 0.4 and 0.6 MPa, sandblasting times of 7, 14 and 21 seconds, and alumina powder sizes of 50 and $110{\mu}m$. The control group did not receive sandblasting. The volume loss and height loss on zirconia surface after sandblasting and the shear bond strength (SBS) between the sandblasted zirconia and ICR after 24-h immersion were measured for each group using multivariate analysis of variance (ANOVA) and Least Significance Difference (LSD) test (${\alpha}$=.05). After sandblasting, the failure modes of the ICR/zirconia surfaces were observed using scanning electron microscopy. RESULTS. The volume loss and height loss were increased with higher sandblasting pressure and longer sandblasting treatment, but they decreased with larger powder size. SBS was significantly increased by increasing the sandblasting time from 7 seconds to 14 seconds and from 14 seconds to 21 seconds, as well as increasing the size of alumina powder from $50{\mu}m$ to $110{\mu}m$. SBS was significantly increased from 0.1 MPa to 0.2 MPa according to the size of alumina powder. However, the SBSs were not significantly different with the sandblasting pressure of 0.2, 0.4 and 0.6 MPa. The possibilities of the combination of both adhesive failure and cohesive failure within the ICR were higher with the increases in bonding strength. CONCLUSION. Based on the findings of this study, sandblasting with alumina particles at 0.2 MPa, 21 seconds and the powder size of $110{\mu}m$ is recommended for dental applications to improve the bonding between zirconia core and ICR.

Effect of Particle Size on Zirconia Gel-Casting Process

  • Kim, In-Woong;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.449-454
    • /
    • 2015
  • The fabrication process of zirconia gel-casting was studied to obtain dense zirconia on a large scale or with complicated shapes. As an experimental parameter, two different particle sizes ($0.1{\mu}m$ and $0.7{\mu}m$) of zirconia powder were applied to the gel-casting process. The viscosity behavior of slurries incorporating 40 vol% of zirconia powder was examined as a function of the dispersant content and the solid load to determine the optimum dispersion conditions. In addition, the gelation time with an initiator, the de-binding behavior, and the main factors affecting densification were examined. The densification of the gel-casted zirconia green body depended on the mixing ratio between the monomer and the dimer and on the zirconia particle size. A green body with a small particle size of $0.1{\mu}m$ showed less densification, with a relative density of 93%. This may be due to the excess number of bubbles created through interactions between the larger particle surface and polymer additives during the ball-milling process.

Effect of Template Size Ratio on Porosity and Strength of Porous Zirconia Ceramics (기공형성제 크기 비(ratio)가 다공질 지르코니아 세라믹스의 기공율과 강도에 미치는 영향)

  • Chae, Su-Ho;Kim, Young-Wook;Song, In-Hyuek;Kim, Hai-Doo;Bae, Ji-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.9
    • /
    • pp.537-543
    • /
    • 2008
  • Effect of template size ratio on porosity and mechanical properties of porous zirconia ceramics were investigated using two different size (${\sim}8{\mu}m$ and ${\sim}50{\mu}m$ in diameter) of polymethyl methacrylate-coethylene glycol dimethacrylate (PMMA) microbeads as sacrificial templates. Porosity of the porous zirconia ceramics increased with decreasing the template size ratio ($8{\mu}m: 50{\mu}m$) whereas the compressive and flexural strengths of the porous zirconia ceramics increased with increasing the template size ratio. By controlling the template size ratio, sintering temperature and sintering time, it was possible to produce porous zirconia ceramics with porosities ranging from 57% to 69%. Typical flexural and compressive strength values of porous zirconia ceramics with ${\sim}60%$ porosity were ${\sim}37\;MPa$ and ${\sim}85\;MPa$, respectively.

Compaction and Sintering Behaviour of Zirconia Powders: I. Compaction Response (지르코니아 분말의 치밀화와 소결거동 : I. 가압에 따른 치밀화 응답)

  • ;Frank L. Riley
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.6
    • /
    • pp.489-495
    • /
    • 1992
  • The continuous compaction response of zirconia powders prepared by different processing treatments was investigated. Though the yield point could be or not below 1 MPa, the change of slope was always observed at high pressure range around 60 MPa. Powder compaction was mainly governed by second compaction stage and compaction rate was decreased with increasing forming pressure. Rotary vacuum dried powder favored a high compaction density, whereas freeze dried and calcined powders favored an increase in the pressing efficiency. In order to extract more reliable information about powder compaction, it was necessary to use not only compaction response diagram but also compaction rate diagram.

  • PDF

Near-Net-Shape Forming and Finite Element Analysis for Ceramic Powder Under Cold Combination Pressing and Pressureless Sintering (냉간 조합압축과 상압소결에 의한 세라믹 분말의 정밀정형과 유한요소해석)

  • Kim, Hong-Gi;Lee, Hyeong-Man;Kim, Gi-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.526-534
    • /
    • 2000
  • Near-net-shape forming of zirconia powder was investigated under the combination of cold die and isostatic pressing and pressureless sintering. A novel combination pressing technique, i.e., die com paction under cold isostatic pressing, allowed to produce a complex shaped ceramic powder compact with the controlled dimensions and relatively uniform density distributions. The constitutive models proposed by Kim and co-workers for densification of ceramic powder under cold compaction and high temperature were implemented into a finite element program (ABAQUS). Experimental data for relative density distributions and deformations of zirconia powder compacts produced by cold combination pressing and pressureless sintering were compared with finite element results. Finite element results agreed well with experimental data.

Effect of Parameters for Dense Bleposit by Plasma (플라즈마에 의한 고밀도침적물 제조시 변수들의 영향)

  • 정인하
    • Journal of Powder Materials
    • /
    • v.5 no.2
    • /
    • pp.111-121
    • /
    • 1998
  • Thick and dense deposit of higher than 97% of theoretical density was formed by induction plasma spraying. To investigate the effects of powder morphology on the density of deposit, two different kinds of Yttria-Stabilized-Zirconia powder, METCO202NS (atomized & agglomerated) and AMDRY146 (fused & crushed), were used and compared. After plasma treatment, porous METCO202NS powder was all the more densely deposited and its density was increased. In addition to the effect of powder morphology, the process parameters such as, sheath gas composition, probe position, particle size and spraying distance, and so on, were evaluated. The result of experiment with AMDRY146 powder, particle size and spraying distance affected highly on the density of the deposit. The optimum process condition for the deposition of -75 ${\mu}m$ of 20%-Yttria-Stabilized-Zirconia powder was 120/201/min of Ar/$H_2$ gas rate, 80 kW of plasma plate power, 8 cm of probe position and 150 Torr of spraying chamber pressure, at which its density showed 97.91% of theoretical density and its deposition rate was 20 mm/min. All the results were assessed by statistical approach what is called ANOVA.

  • PDF

A Study of Ceramic Injection Molding of Watch Case Composed of $ZrO_2$ Powder

  • Kwak, T.S.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.505-506
    • /
    • 2006
  • This study is focused on the manufacturing technique of powder injection molding of watch case made from zirconia powder. A series of computer simulation processes were applied to the prediction of the flow pattern in the inside of the mould and defects as weld-line. The material properties of melted feedstock, including the PVT graph and thermal viscosity flowage properties were measured to obtain the input data to be used in a computer simulation. Also, a molding experiment was conducted and the results of the experiment showed a good agreement with the simulation results for flow pattern and weld line location. On the other hand, gravity and inertia effects have an influence on the velocity of the melt front because of the high density of ceramic powder particles during powder injection molding in comparison with polymer's injection molding process. In the experiment, the position of the melt front was compared with the upper gate and lower gate positions. The gravity and inertia effect could be confirmed in the experimental results.

  • PDF

A Case Study on Sintering Characteristics of Yttria Stabilized Zirconia Powder Prepared by Two-Fluid Spray Drying

  • Choi, Jin Sam;Kong, Young-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.332-337
    • /
    • 2016
  • As a case study on yttria stabilized zirconia ceramics, the sintering characteristics of submicron powders and the granulation prepared by two-fluid spray drying of submicron particles were investigated. As-received powders of yttria stabilized zirconia particles were reduced to a uniform size of less than about 200 nm by repeated milling. Granulation size obtained by the two-fluid spray drying was affected by the organic matter and the primary particle size. Sintering behavior such as porosity, water absorption ratio, density, and transparency was influenced by processing conditions of the powder, and the discontinuous interfaces in a green body were reduced.

Effect of Polymer Content on Synthesis Process and Microstructure of Alumina-Zirconia Composite (알루미나-지르코니아 복합체의 제조공정 및 미세구조에 미치는 폴리머 첨가의 영향)

  • 이상진;권명도;이충효;조경식
    • Journal of Powder Materials
    • /
    • v.10 no.5
    • /
    • pp.310-317
    • /
    • 2003
  • Two-component ceramic (alumina-zirconia) composites were fabricated by a soft-solution process in which polyethylene glycol (PEG) was used as a polymeric carrier. Metal salts and PEG were dissolved in ethyl alcohol without any precipitation in 1:1 volume ratio of alumina and zirconia. In the non-aqueous system, the flammable solvent made explosive, exothermic reaction during drying process. The reaction resulted in formation of volume expanded, porous precursor powders by a vigorous decomposition of organic components in the precursor sol. The PEG content affected the grain size of sintered composites as well as the morphology of precursor powders. The difference of microstructure in sintered composite was attribute to the solubility and homogeneity of metal cations in precursor sol. At the optimum amount of the PEG polymer, the metal ions were dispersed effectively in solution and a homogeneous polymeric network was formed. It made less agglomerated particles in the precursor sol and affected on uniform grain size in sintered composite.