DOI QR코드

DOI QR Code

Effect of Polymer Content on Synthesis Process and Microstructure of Alumina-Zirconia Composite

알루미나-지르코니아 복합체의 제조공정 및 미세구조에 미치는 폴리머 첨가의 영향

  • 이상진 (목포대학교 신소재공학전공) ;
  • 권명도 (목포대학교 신소재공학전공) ;
  • 이충효 (목포대학교 신소재공학전공) ;
  • 조경식 (금오공과대학교 재료공학전공)
  • Published : 2003.10.01

Abstract

Two-component ceramic (alumina-zirconia) composites were fabricated by a soft-solution process in which polyethylene glycol (PEG) was used as a polymeric carrier. Metal salts and PEG were dissolved in ethyl alcohol without any precipitation in 1:1 volume ratio of alumina and zirconia. In the non-aqueous system, the flammable solvent made explosive, exothermic reaction during drying process. The reaction resulted in formation of volume expanded, porous precursor powders by a vigorous decomposition of organic components in the precursor sol. The PEG content affected the grain size of sintered composites as well as the morphology of precursor powders. The difference of microstructure in sintered composite was attribute to the solubility and homogeneity of metal cations in precursor sol. At the optimum amount of the PEG polymer, the metal ions were dispersed effectively in solution and a homogeneous polymeric network was formed. It made less agglomerated particles in the precursor sol and affected on uniform grain size in sintered composite.

Keywords

References

  1. U.S. Patent No.3 330 697 M.P.Pechini
  2. J. Mater. Res. v.7 L.W.Tai;P.A.Lessing https://doi.org/10.1557/JMR.1992.0502
  3. J. Am. Ceram. Soc. v.77 M.A.Gulgun;O.O.Popoola;W.M.Kriven https://doi.org/10.1111/j.1151-2916.1994.tb07026.x
  4. Mater. Res. Bull v.31 D.A.Fumo;M.R.Morelli;A.M.Segadaes https://doi.org/10.1016/0025-5408(96)00112-2
  5. J. Am. Ceram. Soc. v.60 D.M.Roy;S.O.Oyfesobi https://doi.org/10.1111/j.1151-2916.1977.tb15506.x
  6. J. Am. Ceram. Soc. v.81 S.J.Lee;W.M.Kriven https://doi.org/10.1111/j.1151-2916.1998.tb02667.x
  7. J. Am. Ceram. Soc. v.82 M.A.Gulgun;M.H.Nguyen;W.M.Kriven https://doi.org/10.1111/j.1151-2916.1999.tb01800.x
  8. J. Am. Ceram. Soc. v.82 S.J.Lee;E.A.Benson;W.M.Kriven https://doi.org/10.1111/j.1151-2916.1999.tb02039.x
  9. J. Mater. Res. v.14 M.H.Nguyen;S.J.Lee;W.M.Kriven https://doi.org/10.1557/JMR.1999.0462
  10. Ceram. Eng. & Sci. Proc. v.20 S.J.Lee;W.M.Kriven https://doi.org/10.1002/9780470294567.ch9
  11. Kor. J. Ceram. v.6 C.H.Jung;J.Y.Park;M.Y.Lee;S.J.Oh;H.Y.Kim;G.W.Hong
  12. J. Kor. Ceram. Soc. v.39 S.J.Lee;C.H.Lee https://doi.org/10.4191/KCERS.2002.39.4.336
  13. J. Mater. Syn. Proc. v.2 H.Yang;L.Song;Z.Wang
  14. Mater. Sci. Eng. v.B18 X.Li;H.Zhang;F.Chi;S.Li;B.Xu;M.Zhao
  15. Glycols G.O.Curme
  16. A New Polymer Route to the Synthesis of Mixed Oxide Ceramics, M. S. Thesis M.H.Nguyen
  17. J. Am. Ceram. Soc. v.77 S.Kimoto;K.Hirota;O.Yamaguchi https://doi.org/10.1111/j.1151-2916.1994.tb09783.x
  18. J. Am. Ceram. Soc. v.77 M.L.Balmer;F.F.Lange;C.G.Levi https://doi.org/10.1111/j.1151-2916.1994.tb07098.x
  19. J. Am. Ceram. Soc. v.77 K.Yamakata;K.Hirota;O.Yamaguchi https://doi.org/10.1111/j.1151-2916.1994.tb07121.x
  20. J. Am. Ceram. Soc. v.78 M.L.Balmer;F.F.Lange;V.Jayaram;C.G.Levi https://doi.org/10.1111/j.1151-2916.1995.tb08842.x
  21. J. Am. Ceram. Soc. v.73 J.D.French;M.P.Harmer;H.M.Chan;G.A.Miller https://doi.org/10.1111/j.1151-2916.1990.tb07621.x
  22. J. Am. Ceram. Soc. v.67 H.Toraya;M.Yoshimura;S.Somiya
  23. Quantitative Microscopy R.T.DeHoff;F.N.Rhines

Cited by

  1. Grain Growth Behavior and Characteristics of Multiphase Ceramic Composites Fabricated by Organic-Inorganic Solution Technique vol.558-559, pp.1662-9752, 2007, https://doi.org/10.4028/www.scientific.net/MSF.558-559.1249