• Title/Summary/Keyword: Zheng

Search Result 1,836, Processing Time 0.028 seconds

HOPF BIFURCATION IN NUMERICAL APPROXIMATION OF THE SUNFLOWER EQUATION

  • Zhang Chunrui;Zheng Baodong
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.113-124
    • /
    • 2006
  • In this paper we consider the numerical solution of the sunflower equation. We prove that if the sunflower equation has a Hopf bifurcation point at a = ao, then the numerical solution with the Euler-method of the equation has a Hopf bifurcation point at ah = ao + O(h).

HOPF BIFURCATION IN NUMERICAL APPROXIMATION FOR DELAY DIFFERENTIAL EQUATIONS

  • Zhang, Chunrui;Liu, Mingzhu;Zheng, Baodong
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.319-328
    • /
    • 2004
  • In this paper we investigate the qualitative behaviour of numerical approximation to a class delay differential equation. We consider the numerical solution of the delay differential equations undergoing a Hopf bifurcation. We prove the numerical approximation of delay differential equation had a Hopf bifurcation point if the true solution does.

RESULTS ON MEROMORPHIC FUNCTIONS SHARING THREE VALUES CM IN SOME ANGULAR DOMAINS

  • Li, Xiao-Min;Liu, Xue-Feng;Yi, Hong-Xun
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.467-481
    • /
    • 2016
  • We study the uniqueness question of transcendental meromorphic functions that share three values CM in some angular domains instead of the whole complex plane. The results in this paper extend the corresponding results in Zheng [13, 14] and Yi [12]. Some examples are given to show that the results in this paper, in a sense, are the best possible.

INTERVAL OSCILLATION THEOREMS FOR SECOND-ORDER DIFFERENTIAL EQUATIONS

  • Bin, Zheng
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.581-589
    • /
    • 2009
  • In this paper, we are concerned with a class of nonlinear second-order differential equations with a nonlinear damping term and forcing term: $$(r(t)k_1(x(t),x'(t)))'+p(t)k_2(x(t),x'(t))x'(t)+q(t)f(x(t))=0$$. Passage to more general class of equations allows us to remove a restrictive condition usually imposed on the nonlinearity. And, as a consequence, our results apply to wider classes of nonlinear differential equations. Some illustrative examples are considered.

  • PDF

The Hilbert-Type Integral Inequality with the System Kernel of-λ Degree Homogeneous Form

  • Xie, Zitian;Zeng, Zheng
    • Kyungpook Mathematical Journal
    • /
    • v.50 no.2
    • /
    • pp.297-306
    • /
    • 2010
  • In this paper, the integral operator is used. We give a new Hilbert-type integral inequality, whose kernel is the homogeneous form with degree - $\lambda$ and with three pairs of conjugate exponents and the best constant factor and its reverse form are also derived. It is shown that the results of this paper represent an extension as well as some improvements of the earlier results.