• Title/Summary/Keyword: Zeros of polynomials

Search Result 83, Processing Time 0.028 seconds

PAIRED HAYMAN CONJECTURE AND UNIQUENESS OF COMPLEX DELAY-DIFFERENTIAL POLYNOMIALS

  • Gao, Yingchun;Liu, Kai
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.1
    • /
    • pp.155-166
    • /
    • 2022
  • In this paper, the paired Hayman conjecture of different types are considered, namely, the zeros distribution of f(z)nL(g) - a(z) and g(z)nL(f) - a(z), where L(h) takes the derivatives h(k)(z) or the shift h(z+c) or the difference h(z+c)-h(z) or the delay-differential h(k)(z+c), where k is a positive integer, c is a non-zero constant and a(z) is a nonzero small function with respect to f(z) and g(z). The related uniqueness problems of complex delay-differential polynomials are also considered.

Uniqueness Criteria for Signal Reconstruction from Phase-Only Data (위상만을 이용한 신호복원의 유일성 판단법)

  • 이동욱;김영태
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.2
    • /
    • pp.59-64
    • /
    • 2001
  • In this paper, we propose an alternate method for determining the uniqueness of the reconstruction of a complex sequence from its phase. Uniqueness constraints could be derived in terms of the zeros of a complex polynomial defined by the DFT of the sequence. However, rooting of complex polynomials of high order is a very difficult problem. Instead of finding zeros of a complex polynomial, the proposed uniqueness criteria show that non-singularity of a matrix can guarantee the uniqueness of the reconstruction of a complex sequence from its phase-only data. It has clear advantage over the rooting method in numerical stability and computational time.

  • PDF

ON THE BOUNDS OF THE EIGENVALUES OF MATRIX POLYNOMIALS

  • Wali Mohammad Shah;Zahid Bashir Monga
    • Korean Journal of Mathematics
    • /
    • v.31 no.2
    • /
    • pp.145-152
    • /
    • 2023
  • Let $P(z):=\sum\limits^{n}_{j=0}A_jz^j$, Aj ∈ ℂm×m, 0 ≤ j ≤ n be a matrix polynomial of degree n, such that An ≥ An-1 ≥ . . . ≥ A0 ≥ 0, An > 0. Then the eigenvalues of P(z) lie in the closed unit disk. This theorem proved by Dirr and Wimmer [IEEE Trans. Automat. Control 52(2007), 2151-2153] is infact a matrix extension of a famous and elegant result on the distribution of zeros of polynomials known as Eneström-Kakeya theorem. In this paper, we prove a more general result which inter alia includes the above result as a special case. We also prove an improvement of a result due to Lê, Du, Nguyên [Oper. Matrices, 13(2019), 937-954] besides a matrix extention of a result proved by Mohammad [Amer. Math. Monthly, vol.74, No.3, March 1967].

INEQUALITIES FOR B-OPERATOR

  • Akhter, Rubia;Gulzar, M.H.
    • Korean Journal of Mathematics
    • /
    • v.30 no.3
    • /
    • pp.525-532
    • /
    • 2022
  • Let 𝓟n denote the space of all complex polynomials $P(z)=\sum\limits_{j=0}^{n}{\alpha}_jz^j$ of degree n. Let P ∈ 𝓟n, for any complex number α, DαP(z) = nP(z) + (α - z)P'(z), denote the polar derivative of the polynomial P(z) with respect to α and Bn denote a family of operators that maps 𝓟n into itself. In this paper, we combine the operators B and Dα and establish certain operator preserving inequalities concerning polynomials, from which a variety of interesting results can be obtained as special cases.

REAL ROOT ISOLATION OF ZERO-DIMENSIONAL PIECEWISE ALGEBRAIC VARIETY

  • Wu, Jin-Ming;Zhang, Xiao-Lei
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.135-143
    • /
    • 2011
  • As a zero set of some multivariate splines, the piecewise algebraic variety is a kind of generalization of the classical algebraic variety. This paper presents an algorithm for isolating real roots of the zero-dimensional piecewise algebraic variety which is based on interval evaluation and the interval zeros of univariate interval polynomials in Bernstein form. An example is provided to show the proposed algorithm is effective.

On the Weighted L1-convergence of Grünwald Interpolatory Operators

  • Wang, Jian Li;Zhou, Song Ping
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.1
    • /
    • pp.111-118
    • /
    • 2006
  • The present paper investigates the weighted $L^1$-convergence of Gr$\ddot{u}$nwald interpolatory operators based on the zeros of the second Chebyshev polynomials $U_n(x)=\frac{sin(n+1)\theta}{sin\theta}$. The approximation rate is sharp.

  • PDF

DIFFERENTIAL EQUATIONS RELATED TO FAMILY A

  • Li, Ping;Meng, Yong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.247-260
    • /
    • 2011
  • Let h be a meromorphic function with few poles and zeros. By Nevanlinna's value distribution theory we prove some new properties on the polynomials in h with the coefficients being small functions of h. We prove that if f is a meromorphic function and if $f^m$ is identically a polynomial in h with the constant term not vanish identically, then f is a polynomial in h. As an application, we are able to find the entire solutions of the differential equation of the type $$f^n+P(f)=be^{sz}+Q(e^z)$$, where P(f) is a differential polynomial in f of degree at most n-1, and Q($e^z$) is a polynomial in $e^z$ of degree k $\leqslant$ max {n-1, s(n-1)/n} with small functions of $e^z$ as its coefficients.

EXPRESSIONS OF MEROMORPHIC SOLUTIONS OF A CERTAIN TYPE OF NONLINEAR COMPLEX DIFFERENTIAL EQUATIONS

  • Chen, Jun-Fan;Lian, Gui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.1061-1073
    • /
    • 2020
  • In this paper, the expressions of meromorphic solutions of the following nonlinear complex differential equation of the form $$f^n+Qd(z,f)=\sum\limits_{i=1}^{3}pi(z)e^{{\alpha}_i(z)}$$ are studied by using Nevanlinna theory, where n ≥ 5 is an integer, Qd(z, f) is a differential polynomial in f of degree d ≤ n - 4 with rational functions as its coefficients, p1(z), p2(z), p3(z) are non-vanishing rational functions, and α1(z), α2(z), α3(z) are nonconstant polynomials such that α'1(z), α'2(z), α'3(z) are distinct each other. Moreover, examples are given to illustrate the accuracy of the condition.

IMPROVEMENT AND GENERALIZATION OF A THEOREM OF T. J. RIVLIN

  • Pritika, Mahajan;Devi, Khangembam Babina;Reingachan, N.;Chanam, Barchand
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.3
    • /
    • pp.691-700
    • /
    • 2022
  • Let p(z) be a polynomial of degree n having no zero inside the unit circle. Then for 0 < r ≤ 1, the well-known inequality due to Rivlin [Amer. Math. Monthly., 67 (1960) 251-253] is $$\max\limits_{{\mid}z{\mid}=r}{\mid}p(z){\mid}{\geq}{\(\frac{r+1}{2}\)^n}\max\limits_{{\mid}z{\mid}=1}{\mid}p(z){\mid}$$. In this paper, we generalize as well as sharpen the above inequality. Also our results not only generalize, but also sharpen some known results proved recently.