On the Weighted L1-convergence of Grünwald Interpolatory Operators

  • Wang, Jian Li (Department of Mathematics, Shaoxing Arts and Science College) ;
  • Zhou, Song Ping (Institute of Mathematics, Zhejiang Sci-Tech University, Xiasha Economic Development Area)
  • Received : 2004.09.30
  • Published : 2006.03.23

Abstract

The present paper investigates the weighted $L^1$-convergence of Gr$\ddot{u}$nwald interpolatory operators based on the zeros of the second Chebyshev polynomials $U_n(x)=\frac{sin(n+1)\theta}{sin\theta}$. The approximation rate is sharp.

Keywords

References

  1. Z. Ditzian and V. Totik, Moduli of smoothness, Spring-Verlag, Berlin, (1987).
  2. Y. L. Luo, Y. Z. Gao and Q. Wang, The rate of $L^1$-convergence of Gr¨unwald interpolatory operators, Pure Appl. Math., 14(3)(1998), 55-59 (in Chinese).
  3. G. Min, On Grunwald interpolatory operators and its application, J. Math. Res. Exposition, 9(1989), 442-446 (in Chinese).
  4. G. Min, On $L^1$-convergence of Grunwald interpolatory operators, Advan. Math. (China), 18(1989), 485-490 (in Chinese).
  5. P. Nevai and P. Vertesi, Mean convergence of Hermite-Fejer interpolation, J. Math. Anal. Appl., 105(1985), 26-53. https://doi.org/10.1016/0022-247X(85)90095-2
  6. G. Q. Xu and Y. P. Liu, The rate of $L^2$-convergence of a kind of quasi-Gr¨unwald interpolatory operators, J. Math. Engin.,17(2)(2000), 19-24.