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Abstract. The present paper investigates the weighted L1-convergence of Grünwald in-

terpolatory operators based on the zeros of the second Chebyshev polynomials Un(x) =
sin(n+1)θ

sin θ
. The approximation rate is sharp.

1. Introduction

Let f ∈ C[−1,1], taking {xn
k}n

k=1 = {xk}n
k=1, the zeros of the second Chebyshev

polynomials Un(x) = sin(n+1)θ
sin θ , x = cos θ, as the nodes, then we define the famous

Grünwald interpolatory operators as follows:

Gn(f, x) =
n∑

k=1

f(xk)l2k(x),

where

lk(x) =
Un(x)

U ′
n(xk)(x− xk)

, k = 1, 2, · · · , n.

G. Min (see [3] and [4]) proved that Gn(f, x) uniformly converges to f(x) in
any closed interval [a, b] ⊂ (−1, 1), and it also converges to f(x) in the L1 norm
(furthermore, [2] obtained the L1-convergence rate). In order to analyse the nature
of L1-convergence by the Grünwald operators completely, the present paper will
investigate the weighted case and establish the following
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Theorem. For any f ∈ C[−1,1], the following estimates

∫ 1

−1

|Gn(f, x)− f(x)| (
√

1− x2)λdx ≤





Cλ

[
ωϕ(f, 1

n ) + 1
n‖f‖

]
, λ > 0,

C
[
ωϕ(f, 1

n ) + log n
n ‖f‖

]
, λ = 0,

Cλ

[
ωϕ(f, 1

n ) + 1
n1+λ ‖f‖

]
, −1 ≤ λ < 0

hold, where ωϕ(f, h) is the Ditzian-Totik type modulus with ϕ(x) =
√

1− x2, ‖f‖
denotes the supremum norm on [−1, 1], C and Cλ denotes an absolute positive
constant and a positive constant only depending on λ respectively, their values may
be different even in the same line.

2. Proof of Theorem

We establish some lemmas.

Lemma 1. For any f ∈ C[−1,1], λ > −1, it holds that

(1)
∫ 1

−1

|Gn(f, x)| (
√

1− x2)λdx ≤ Cλ‖f‖.

Proof. From [5], we have

n∑

k=1

l2k(x) ≤ C

[
1 +

log n

n
(1− x2)−1

]
, x ∈ (−1, 1).

Obviously, Gn(f, x) is a polynomial of degree ≤ 2n− 1. By using the inequality [1,
(8.1.4)], we have

∫ 1

−1

|Gn(f, x)| (
√

1− x2)λdx(2)

≤ C

∫ 1−(2n)−2

−1+(2n)−2
|Gn(f, x)| (

√
1− x2)λdx

≤ C‖f‖
∫ 1−(2n)−2

−1+(2n)−2

(
n∑

k=1

l2k(x)

)
(
√

1− x2)λdx

≤ C‖f‖+ C
log n

n
‖f‖

∫ 1−(2n)−2

−1+(2n)−2

(
1− x2

)−1
(
√

1− x2)λdx,
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and

∫ 1−(2n)−2

−1+(2n)−2

(
1− x2

)−1
(
√

1− x2)λdx(3)

≤ C

∫ 1−(2n)−2

−1+(2n)−2

(
1

(1− x)1−
λ
2

+
1

(1 + x)1−
λ
2

)
dx

≤





Cλ, λ > 0,

C log n, λ = 0,

Cλn−λ, −1 < λ < 0.

Together with (2) and (3), (1) is proved. ¤

Write Pn(x) as the best polynomial approximant of degree n to f(x), and

σk(x) = (x− xk)
1− x2

1− x2
k

l2k(x), k = 1, 2, · · · , n.

Lemma 2. For any f ∈ C[−1,1], λ > −1, we have

(4)
∫ 1

−1

|f(x)− Pn(x)| (
√

1− x2)λdx ≤ Cλωϕ

(
f,

1
n

)
,

and

(5)
∫ 1

−1

|Gn(f, x)−Gn(Pn, x)| (
√

1− x2)λdx ≤ Cλωϕ

(
f,

1
n

)
.

Proof. Using [1, Theorem 7.21], we know

‖f − Pn‖ ≤ Cωϕ

(
f,

1
n

)
,

which means (4) holds. Applying (1) and noting that Gn(f, x) is a positive linear
operator, we have

∫ 1

−1

|Gn(f, x)−Gn(Pn, x)| (
√

1− x2)λdx

≤ ‖f − Pn‖
∫ 1

−1

Gn(1, x)(
√

1− x2)λdx ≤ Cλωϕ

(
f,

1
n

)
,

therefore, (5) holds. ¤
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Lemma 3. If f is a polynomial of degree 2n+1, then we have the following identity:

Gn(f, x)− f(x) = (Gn(f, 1)− f(1))
1 + x

2

(
Un(x)
Un(1)

)2

(6)

+ (Gn(f,−1)− f(−1))
1− x

2

(
Un(x)

Un(−1)

)2

+
n∑

k=1

f(xk)
3xk

1− x2
k

σk(x)−
n∑

k=1

f ′(xk)σk(x).

Proof. Write

Hn(x) = Gn(f, x)− f(x)−
(

(Gn(f, 1)− f(1))
1 + x

2

(
Un(x)
Un(1)

)2

+ (Gn(f,−1)− f(−1))
1− x

2

(
Un(x)

Un(−1)

)2

+
n∑

k=1

f(xk)
3xk

1− x2
k

σk(x)−
n∑

k=1

f ′(xk)σk(x)

)
.

Since Gn(f, x) is a polynomial of degree ≤ 2n− 2, Hn(x) is a polynomial of degree
2n + 1. We check that

Hn(xk) = 0, k = 1, 2, · · · , n; Hn(±1) = 0.

In view of that lk(xk) = 1, we see that
(
l2k(x)

)′∣∣∣
x=xj

= 0, j 6= k,

(
l2k(x)

)′∣∣∣
x=xk

= 2l′k(xk) =
2

U ′
n(xk)

∑

j 6=k

Un(x)
(x− xk)(x− xj)

∣∣∣∣∣∣
x=xk

=
U ′′

n (xk)
U ′

n(xk)
=

3xk

1− x2
k

,

hence

G′n(f, xk)− f ′(xk) = f(xk)
3xk

1− x2
k

− f ′(xk)

= f(xk)
3xk

1− x2
k

σ′k(xk)− f ′(xk)σ′k(xk),

thus H ′
n(xk) = 0, k = 1, 2, · · · , n. A polynomial of degree 2n + 1 vanishes at 2n + 2

points (multiplicity calculated) must equal to zero. Lemma 3 is proved. ¤
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It is not difficult to deduce that

Lemma 4. For p > q,

∫ π

0

| sin(n + 1)θ|p
sinq θ

dθ '
{

log n, q = 1,

nq−1, q > 1.

Lemma 5. For any λ > −1, we have

∫ 1

−1

∣∣∣∣∣(Gn(Pn, 1)− Pn(1))
1 + x

2

(
Un(x)
Un(1)

)2
∣∣∣∣∣ (

√
1− x2)λdx(7)

≤





Cλn−1‖f‖, λ > 0,

Cn−1 log n‖f‖, λ = 0,

Cλn−1−λ‖f‖, −1 < λ < 0,

and

∫ 1

−1

∣∣∣∣∣(Gn(Pn,−1)− Pn(−1))
1− x

2

(
Un(x)

Un(−1)

)2
∣∣∣∣∣ (

√
1− x2)λdx(8)

≤





Cλn−1‖f‖, λ > 0,

Cn−1 log n‖f‖, λ = 0,

Cλn−1−λ‖f‖, −1 < λ < 0.

Proof. It is easy to check that Un(±1) = n + 1 and

n∑

k=1

l2k(±1) =
3n− 1

2
.

Then we use that ‖Pn‖ ≤ 2‖f‖ to yield that

∫ 1

−1

∣∣∣∣(Gn(Pn, 1)− Pn(1))
1 + x

2

(
Un(x)
Un(1)

)2
∣∣∣∣∣ (

√
1− x2)λdx

≤ 2‖f‖
(

1 +
n∑

k=1

l2k(1)

)
1

(n + 1)2

∫ 1

−1

U2
n(x)(

√
1− x2)λdx

≤ C‖f‖n−1

∫ 1

−1

U2
n(x)(

√
1− x2)λdx

≤ C‖f‖n−1

∫ π

0

sin2 nθ

sin1−λ θ
dθ.
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Applying Lemma 4, with simple calculations for different cases λ > 0, λ = 0 and
−1 < λ < 0, leads to (7). (8) can be proved similarly. ¤

Lemma 6. For any λ > −2, we have

∫ 1

−1

∣∣∣∣∣
n∑

k=1

Pn(xk)
3xk

1− x2
k

σk(x)

∣∣∣∣∣ (
√

1− x2)λdx(9)

≤





Cλn−1‖f‖, λ > − 1
2 ,

Cn−1 log n‖f‖, λ = − 1
2 ,

Cλn−λ− 3
2 ‖f‖, −2 < λ < − 1

2 .

Proof. We have (cf. [2], (22))

∫ 1

−1

(
n∑

k=1

Pn(xk)
3xk

1− x2
k

σk(x)

)2 √
1− x2dx ≤ 180π

n2
‖f‖2.

Note that
n∑

k=1

Pn(xk) 3xk

1−x2
k
σk(x) is a polynomial of degree ≤ 2n+1, in a similar way

to the proof of Lemma 1, we have

∫ 1

−1

∣∣∣∣∣
n∑

k=1

Pn(xk)
3xk

1− x2
k

σk(x)

∣∣∣∣∣ (
√

1− x2)λdx

≤ C

∫ 1−n−2

−1+n−2

∣∣∣∣∣
n∑

k=1

Pn(xk)
3xk

1− x2
k

σk(x)

∣∣∣∣∣ (
√

1− x2)λdx

≤




∫ 1−n−2

−1+n−2

(
n∑

k=1

Pn(xk)
3xk

1− x2
k

σk(x)

)2 √
1− x2dx





1
2 {∫ 1−n−2

−1+n−2
(
√

1− x2)2λ−1dx

} 1
2

≤ Cn−1‖f‖
{∫ 1−n−2

−1+n−2
(
√

1− x2)2λ−1dx

} 1
2

≤ Cn−1‖f‖
{∫ 1−n−2

−1+n−2

(
1

(1− x)
1
2−λ

+
1

(1 + x)
1
2−λ

)
dx

} 1
2

,

then (9) can be verified easily. ¤

Lemma 7. For any λ > −1, we have

(10)
∫ 1

−1

∣∣∣∣∣
n∑

k=1

P ′n(xk)σk(x)

∣∣∣∣∣ (
√

1− x2)λdx ≤ Cλωϕ

(
f,

1
n

)
.
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Proof. From [6, (32)], we have

∫ 1

−1

(
n∑

k=1

P ′n(xk)σk(x)

)2
dx√

1− x2
≤ Cω2

ϕ

(
f,

1
n

)
,

because λ > −1, 1 + 2λ > −1, by Hölder inequality, we get

∫ 1

−1

∣∣∣∣∣
n∑

k=1

P ′n(xk)σk(x)

∣∣∣∣∣ (
√

1− x2)λdx

≤




∫ 1

−1

(
n∑

k=1

P ′n(xk)σk(x)

)2
dx√

1− x2





1
2 {∫ 1

−1

(
√

1− x2)2λ+1dx

} 1
2

≤ Cλωϕ

(
f,

1
n

)
.

¤
Proof of Theorem. Altogether, with the above lemmas, we can proceed the proof of
our theorem now. Since Gn(f, x) is linear, by applying lemma 3, we then have

Gn(f, x)− f(x)
= Gn(f, x)−Gn(Pn, x) + Gn(Pn, x)− Pn(x) + Pn(x)− f(x)

= (Gn(f, x)−Gn(Pn, x)) + (Pn(x)− f(x)) + (Gn(Pn, 1)− Pn(1))
1 + x

2

(
Un(x)
Un(1)

)2

+ (Gn(Pn,−1)− Pn(−1))
1− x

2

(
Un(x)

Un(−1)

)2

+
n∑

k=1

Pn(xk)
3xk

1− x2
k

σk(x)−
n∑

k=1

P ′n(xk)σk(x),

with (4), (5), (7)-(10), we can get the required result. ¤

3. Remarks

For λ ≤ −1, there exist an f0(x) ∈ C[−1,1] such that

(11)
∫ 1

−1

|Gn(f0, x)− f0(x)| (
√

1− x2)λdx 6−→ 0, n →∞.

In fact, take f0(x) = 1, then we have

Gn(f0, x)− f0(x) =
3
2

n− 1
(n + 1)2

U2
n(x) +

n∑

k=1

3xk

1− x2
k

σk(x).
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When λ ≥ −1, by Lemma 4 we have
∫ 1

−1

3
2

n− 1
(n + 1)2

U2
n(x)(

√
1− x2)λdx ≥ C

n

∫ π

0

sin2 nθ

sin1−λ θ
dθ

≥





C, λ = −1,

Cλn−1−λ, −1 < λ < 0,

C log n/n, λ = 0,

Cλn−1, λ > 0,

together with (9), we have

∫ 1

−1

∣∣∣∣∣
n∑

k=1

3xk

1− x2
k

σk(x)

∣∣∣∣∣ (
√

1− x2)λdx = o

(∫ 1

−1

3
2

n− 1
(n + 1)2

U2
n(x)(

√
1− x2)λdx

)
,

that means, (11) holds for λ = −1.
The above estimates also show that our results are sharp for λ > −1.
We conclude that the result of [2] is a special case λ = 0 of our theorem.
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