On the Weighted L^{1}-convergence of Grünwald Interpolatory Operators

Jian Li Wang

Department of Mathematics, Shaoxing Arts and Science College, Shaoxing, Zhejiang 312000, China

Song Ping Zhou
Institute of Mathematics, Zhejiang Sci-Tech University, Xiasha Economic Development Area, Hangzhou, Zhejiang 310018, China
e-mail: szhou@zjip.com
Abstract. The present paper investigates the weighted L^{1}-convergence of Grünwald interpolatory operators based on the zeros of the second Chebyshev polynomials $U_{n}(x)=$ $\frac{\sin (n+1) \theta}{\sin \theta}$. The approximation rate is sharp.

1. Introduction

Let $f \in C_{[-1,1]}$, taking $\left\{x_{k}^{n}\right\}_{k=1}^{n}=\left\{x_{k}\right\}_{k=1}^{n}$, the zeros of the second Chebyshev polynomials $U_{n}(x)=\frac{\sin (n+1) \theta}{\sin \theta}, x=\cos \theta$, as the nodes, then we define the famous Grünwald interpolatory operators as follows:

$$
G_{n}(f, x)=\sum_{k=1}^{n} f\left(x_{k}\right) l_{k}^{2}(x)
$$

where

$$
l_{k}(x)=\frac{U_{n}(x)}{U_{n}^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)}, \quad k=1,2, \cdots, n
$$

G. Min (see [3] and [4]) proved that $G_{n}(f, x)$ uniformly converges to $f(x)$ in any closed interval $[a, b] \subset(-1,1)$, and it also converges to $f(x)$ in the L^{1} norm (furthermore, [2] obtained the L^{1}-convergence rate). In order to analyse the nature of L^{1}-convergence by the Grünwald operators completely, the present paper will investigate the weighted case and establish the following

Received September 30, 2004.
2000 Mathematics Subject Classification: 41A05, 41A25, 41A36.
Key words and phrases: Grünwald operator, L^{1}-convergence, weight.
Supported in part by Natural Science Foundation of China (No. 10471130) and Zhejiang Provincial Natural Science Foundation of China (No. 101009).

Theorem. For any $f \in C_{[-1,1]}$, the following estimates

$$
\int_{-1}^{1}\left|G_{n}(f, x)-f(x)\right|\left(\sqrt{1-x^{2}}\right)^{\lambda} d x \leq \begin{cases}C_{\lambda}\left[\omega_{\varphi}\left(f, \frac{1}{n}\right)+\frac{1}{n}\|f\|\right], & \lambda>0 \\ C\left[\omega_{\varphi}\left(f, \frac{1}{n}\right)+\frac{\log n}{n}\|f\|\right], & \lambda=0 \\ C_{\lambda}\left[\omega_{\varphi}\left(f, \frac{1}{n}\right)+\frac{1}{n^{1+\lambda}}\|f\|\right], & -1 \leq \lambda<0\end{cases}
$$

hold, where $\omega_{\varphi}(f, h)$ is the Ditzian-Totik type modulus with $\varphi(x)=\sqrt{1-x^{2}},\|f\|$ denotes the supremum norm on $[-1,1], C$ and C_{λ} denotes an absolute positive constant and a positive constant only depending on λ respectively, their values may be different even in the same line.

2. Proof of Theorem

We establish some lemmas.
Lemma 1. For any $f \in C_{[-1,1]}, \lambda>-1$, it holds that

$$
\begin{equation*}
\int_{-1}^{1}\left|G_{n}(f, x)\right|\left(\sqrt{1-x^{2}}\right)^{\lambda} d x \leq C_{\lambda}\|f\| \tag{1}
\end{equation*}
$$

Proof. From [5], we have

$$
\sum_{k=1}^{n} l_{k}^{2}(x) \leq C\left[1+\frac{\log n}{n}\left(1-x^{2}\right)^{-1}\right], x \in(-1,1)
$$

Obviously, $G_{n}(f, x)$ is a polynomial of degree $\leq 2 n-1$. By using the inequality [1, (8.1.4)], we have

$$
\begin{align*}
& \int_{-1}^{1}\left|G_{n}(f, x)\right|\left(\sqrt{1-x^{2}}\right)^{\lambda} d x \tag{2}\\
\leq & C \int_{-1+(2 n)^{-2}}^{1-(2 n)^{-2}}\left|G_{n}(f, x)\right|\left(\sqrt{1-x^{2}}\right)^{\lambda} d x \\
\leq & C\|f\| \int_{-1+(2 n)^{-2}}^{1-(2 n)^{-2}}\left(\sum_{k=1}^{n} l_{k}^{2}(x)\right)\left(\sqrt{1-x^{2}}\right)^{\lambda} d x \\
\leq & C\|f\|+C \frac{\log n}{n}\|f\| \int_{-1+(2 n)^{-2}}^{1-(2 n)^{-2}}\left(1-x^{2}\right)^{-1}\left(\sqrt{1-x^{2}}\right)^{\lambda} d x
\end{align*}
$$

and

$$
\begin{align*}
& \int_{-1+(2 n)^{-2}}^{1-(2 n)^{-2}}\left(1-x^{2}\right)^{-1}\left(\sqrt{1-x^{2}}\right)^{\lambda} d x \tag{3}\\
\leq & C \int_{-1+(2 n)^{-2}}^{1-(2 n)^{-2}}\left(\frac{1}{(1-x)^{1-\frac{\lambda}{2}}}+\frac{1}{(1+x)^{1-\frac{\lambda}{2}}}\right) d x \\
\leq & \begin{cases}C_{\lambda}, & \lambda>0 \\
C \log n, & \lambda=0 \\
C_{\lambda} n^{-\lambda}, & -1<\lambda<0 .\end{cases}
\end{align*}
$$

Together with (2) and (3), (1) is proved.
Write $P_{n}(x)$ as the best polynomial approximant of degree n to $f(x)$, and

$$
\sigma_{k}(x)=\left(x-x_{k}\right) \frac{1-x^{2}}{1-x_{k}^{2}} l_{k}^{2}(x), k=1,2, \cdots, n
$$

Lemma 2. For any $f \in C_{[-1,1]}, \lambda>-1$, we have

$$
\begin{equation*}
\int_{-1}^{1}\left|f(x)-P_{n}(x)\right|\left(\sqrt{1-x^{2}}\right)^{\lambda} d x \leq C_{\lambda} \omega_{\varphi}\left(f, \frac{1}{n}\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{-1}^{1}\left|G_{n}(f, x)-G_{n}\left(P_{n}, x\right)\right|\left(\sqrt{1-x^{2}}\right)^{\lambda} d x \leq C_{\lambda} \omega_{\varphi}\left(f, \frac{1}{n}\right) \tag{5}
\end{equation*}
$$

Proof. Using [1, Theorem 7.21], we know

$$
\left\|f-P_{n}\right\| \leq C \omega_{\varphi}\left(f, \frac{1}{n}\right)
$$

which means (4) holds. Applying (1) and noting that $G_{n}(f, x)$ is a positive linear operator, we have

$$
\begin{aligned}
& \int_{-1}^{1}\left|G_{n}(f, x)-G_{n}\left(P_{n}, x\right)\right|\left(\sqrt{1-x^{2}}\right)^{\lambda} d x \\
\leq & \left\|f-P_{n}\right\| \int_{-1}^{1} G_{n}(1, x)\left(\sqrt{1-x^{2}}\right)^{\lambda} d x \leq C_{\lambda} \omega_{\varphi}\left(f, \frac{1}{n}\right),
\end{aligned}
$$

therefore, (5) holds.

Lemma 3. If f is a polynomial of degree $2 n+1$, then we have the following identity:

$$
\begin{align*}
G_{n}(f, x)-f(x)= & \left(G_{n}(f, 1)-f(1)\right) \frac{1+x}{2}\left(\frac{U_{n}(x)}{U_{n}(1)}\right)^{2} \tag{6}\\
& +\left(G_{n}(f,-1)-f(-1)\right) \frac{1-x}{2}\left(\frac{U_{n}(x)}{U_{n}(-1)}\right)^{2} \\
& +\sum_{k=1}^{n} f\left(x_{k}\right) \frac{3 x_{k}}{1-x_{k}^{2}} \sigma_{k}(x)-\sum_{k=1}^{n} f^{\prime}\left(x_{k}\right) \sigma_{k}(x) .
\end{align*}
$$

Proof. Write

$$
\begin{aligned}
H_{n}(x)= & G_{n}(f, x)-f(x)-\left(\left(G_{n}(f, 1)-f(1)\right) \frac{1+x}{2}\left(\frac{U_{n}(x)}{U_{n}(1)}\right)^{2}\right. \\
& +\left(G_{n}(f,-1)-f(-1)\right) \frac{1-x}{2}\left(\frac{U_{n}(x)}{U_{n}(-1)}\right)^{2} \\
& \left.+\sum_{k=1}^{n} f\left(x_{k}\right) \frac{3 x_{k}}{1-x_{k}^{2}} \sigma_{k}(x)-\sum_{k=1}^{n} f^{\prime}\left(x_{k}\right) \sigma_{k}(x)\right) .
\end{aligned}
$$

Since $G_{n}(f, x)$ is a polynomial of degree $\leq 2 n-2, H_{n}(x)$ is a polynomial of degree $2 n+1$. We check that

$$
H_{n}\left(x_{k}\right)=0, \quad k=1,2, \cdots, n ; \quad H_{n}(\pm 1)=0 .
$$

In view of that $l_{k}\left(x_{k}\right)=1$, we see that

$$
\begin{aligned}
& \left.\left(l_{k}^{2}(x)\right)^{\prime}\right|_{x=x_{j}}=0, j \neq k, \\
\left.\left(l_{k}^{2}(x)\right)^{\prime}\right|_{x=x_{k}}= & 2 l_{k}^{\prime}\left(x_{k}\right)=\left.\frac{2}{U_{n}^{\prime}\left(x_{k}\right)} \sum_{j \neq k} \frac{U_{n}(x)}{\left(x-x_{k}\right)\left(x-x_{j}\right)}\right|_{x=x_{k}} \\
= & \frac{U_{n}^{\prime \prime}\left(x_{k}\right)}{U_{n}^{\prime}\left(x_{k}\right)}=\frac{3 x_{k}}{1-x_{k}^{2}},
\end{aligned}
$$

hence

$$
\begin{aligned}
G_{n}^{\prime}\left(f, x_{k}\right)-f^{\prime}\left(x_{k}\right) & =f\left(x_{k}\right) \frac{3 x_{k}}{1-x_{k}^{2}}-f^{\prime}\left(x_{k}\right) \\
& =f\left(x_{k}\right) \frac{3 x_{k}}{1-x_{k}^{2}} \sigma_{k}^{\prime}\left(x_{k}\right)-f^{\prime}\left(x_{k}\right) \sigma_{k}^{\prime}\left(x_{k}\right),
\end{aligned}
$$

thus $H_{n}^{\prime}\left(x_{k}\right)=0, k=1,2, \cdots, n$. A polynomial of degree $2 n+1$ vanishes at $2 n+2$ points (multiplicity calculated) must equal to zero. Lemma 3 is proved.

It is not difficult to deduce that
Lemma 4. For $p>q$,

$$
\int_{0}^{\pi} \frac{|\sin (n+1) \theta|^{p}}{\sin ^{q} \theta} d \theta \simeq \begin{cases}\log n, & q=1 \\ n^{q-1}, & q>1\end{cases}
$$

Lemma 5. For any $\lambda>-1$, we have

$$
\begin{align*}
& \int_{-1}^{1}\left|\left(G_{n}\left(P_{n}, 1\right)-P_{n}(1)\right) \frac{1+x}{2}\left(\frac{U_{n}(x)}{U_{n}(1)}\right)^{2}\right|\left(\sqrt{1-x^{2}}\right)^{\lambda} d x \tag{7}\\
\leq & \begin{cases}C_{\lambda} n^{-1}\|f\|, & \lambda>0 \\
C n^{-1} \log n\|f\|, & \lambda=0 \\
C_{\lambda} n^{-1-\lambda}\|f\|, & -1<\lambda<0,\end{cases}
\end{align*}
$$

and

$$
\begin{align*}
& \int_{-1}^{1}\left|\left(G_{n}\left(P_{n},-1\right)-P_{n}(-1)\right) \frac{1-x}{2}\left(\frac{U_{n}(x)}{U_{n}(-1)}\right)^{2}\right|\left(\sqrt{1-x^{2}}\right)^{\lambda} d x \tag{8}\\
\leq & \begin{cases}C_{\lambda} n^{-1}\|f\|, & \lambda>0 \\
C n^{-1} \log n\|f\|, & \lambda=0 \\
C_{\lambda} n^{-1-\lambda}\|f\|, & -1<\lambda<0\end{cases}
\end{align*}
$$

Proof. It is easy to check that $U_{n}(\pm 1)=n+1$ and

$$
\sum_{k=1}^{n} l_{k}^{2}(\pm 1)=\frac{3 n-1}{2}
$$

Then we use that $\left\|P_{n}\right\| \leq 2\|f\|$ to yield that

$$
\begin{aligned}
& \int_{-1}^{1}\left|\left(G_{n}\left(P_{n}, 1\right)-P_{n}(1)\right) \frac{1+x}{2}\left(\frac{U_{n}(x)}{U_{n}(1)}\right)^{2}\right|\left(\sqrt{1-x^{2}}\right)^{\lambda} d x \\
\leq & 2\|f\|\left(1+\sum_{k=1}^{n} l_{k}^{2}(1)\right) \frac{1}{(n+1)^{2}} \int_{-1}^{1} U_{n}^{2}(x)\left(\sqrt{1-x^{2}}\right)^{\lambda} d x \\
\leq & C\|f\| n^{-1} \int_{-1}^{1} U_{n}^{2}(x)\left(\sqrt{1-x^{2}}\right)^{\lambda} d x \\
\leq & C\|f\| n^{-1} \int_{0}^{\pi} \frac{\sin ^{2} n \theta}{\sin ^{1-\lambda} \theta} d \theta .
\end{aligned}
$$

Applying Lemma 4, with simple calculations for different cases $\lambda>0, \lambda=0$ and $-1<\lambda<0$, leads to (7). (8) can be proved similarly.

Lemma 6. For any $\lambda>-2$, we have

$$
\begin{align*}
& \int_{-1}^{1}\left|\sum_{k=1}^{n} P_{n}\left(x_{k}\right) \frac{3 x_{k}}{1-x_{k}^{2}} \sigma_{k}(x)\right|\left(\sqrt{1-x^{2}}\right)^{\lambda} d x \tag{9}\\
\leq & \begin{cases}C_{\lambda} n^{-1}\|f\|, & \lambda>-\frac{1}{2}, \\
C n^{-1} \log n\|f\|, & \lambda=-\frac{1}{2}, \\
C_{\lambda} n^{-\lambda-\frac{3}{2}}\|f\|, & -2<\lambda<-\frac{1}{2} .\end{cases}
\end{align*}
$$

Proof. We have (cf. [2], (22))

$$
\int_{-1}^{1}\left(\sum_{k=1}^{n} P_{n}\left(x_{k}\right) \frac{3 x_{k}}{1-x_{k}^{2}} \sigma_{k}(x)\right)^{2} \sqrt{1-x^{2}} d x \leq \frac{180 \pi}{n^{2}}\|f\|^{2} .
$$

Note that $\sum_{k=1}^{n} P_{n}\left(x_{k}\right) \frac{3 x_{k}}{1-x_{k}^{2}} \sigma_{k}(x)$ is a polynomial of degree $\leq 2 n+1$, in a similar way to the proof of Lemma 1, we have

$$
\begin{aligned}
& \int_{-1}^{1}\left|\sum_{k=1}^{n} P_{n}\left(x_{k}\right) \frac{3 x_{k}}{1-x_{k}^{2}} \sigma_{k}(x)\right|\left(\sqrt{1-x^{2}}\right)^{\lambda} d x \\
\leq & C \int_{-1+n^{-2}}^{1-n^{-2}}\left|\sum_{k=1}^{n} P_{n}\left(x_{k}\right) \frac{3 x_{k}}{1-x_{k}^{2}} \sigma_{k}(x)\right|\left(\sqrt{1-x^{2}}\right)^{\lambda} d x \\
\leq & \left\{\int_{-1+n^{-2}}^{1-n^{-2}}\left(\sum_{k=1}^{n} P_{n}\left(x_{k}\right) \frac{3 x_{k}}{1-x_{k}^{2}} \sigma_{k}(x)\right)^{2} \sqrt{1-x^{2}} d x\right\}^{\frac{1}{2}}\left\{\int_{-1+n^{-2}}^{1-n^{-2}}\left(\sqrt{1-x^{2}}\right)^{2 \lambda-1} d x\right\}^{\frac{1}{2}} \\
\leq & C n^{-1}\|f\|\left\{\int_{-1+n^{-2}}^{1-n^{-2}}\left(\sqrt{1-x^{2}}\right)^{2 \lambda-1} d x\right\}^{\frac{1}{2}} \\
\leq & C n^{-1}\|f\|\left\{\int_{-1+n^{-2}}^{1-n^{-2}}\left(\frac{1}{(1-x)^{\frac{1}{2}-\lambda}}+\frac{1}{(1+x)^{\frac{1}{2}-\lambda}}\right) d x\right\}^{\frac{1}{2}},
\end{aligned}
$$

then (9) can be verified easily.
Lemma 7. For any $\lambda>-1$, we have

$$
\begin{equation*}
\int_{-1}^{1}\left|\sum_{k=1}^{n} P_{n}^{\prime}\left(x_{k}\right) \sigma_{k}(x)\right|\left(\sqrt{1-x^{2}}\right)^{\lambda} d x \leq C_{\lambda} \omega_{\varphi}\left(f, \frac{1}{n}\right) \tag{10}
\end{equation*}
$$

Proof. From [6, (32)], we have

$$
\int_{-1}^{1}\left(\sum_{k=1}^{n} P_{n}^{\prime}\left(x_{k}\right) \sigma_{k}(x)\right)^{2} \frac{d x}{\sqrt{1-x^{2}}} \leq C \omega_{\varphi}^{2}\left(f, \frac{1}{n}\right)
$$

because $\lambda>-1,1+2 \lambda>-1$, by Hölder inequality, we get

$$
\begin{aligned}
& \int_{-1}^{1}\left|\sum_{k=1}^{n} P_{n}^{\prime}\left(x_{k}\right) \sigma_{k}(x)\right|\left(\sqrt{1-x^{2}}\right)^{\lambda} d x \\
\leq & \left\{\int_{-1}^{1}\left(\sum_{k=1}^{n} P_{n}^{\prime}\left(x_{k}\right) \sigma_{k}(x)\right)^{2} \frac{d x}{\sqrt{1-x^{2}}}\right\}^{\frac{1}{2}}\left\{\int_{-1}^{1}\left(\sqrt{1-x^{2}}\right)^{2 \lambda+1} d x\right\}^{\frac{1}{2}} \\
\leq & C_{\lambda} \omega_{\varphi}\left(f, \frac{1}{n}\right) .
\end{aligned}
$$

Proof of Theorem. Altogether, with the above lemmas, we can proceed the proof of our theorem now. Since $G_{n}(f, x)$ is linear, by applying lemma 3 , we then have

$$
\begin{aligned}
& G_{n}(f, x)-f(x) \\
= & G_{n}(f, x)-G_{n}\left(P_{n}, x\right)+G_{n}\left(P_{n}, x\right)-P_{n}(x)+P_{n}(x)-f(x) \\
= & \left(G_{n}(f, x)-G_{n}\left(P_{n}, x\right)\right)+\left(P_{n}(x)-f(x)\right)+\left(G_{n}\left(P_{n}, 1\right)-P_{n}(1)\right) \frac{1+x}{2}\left(\frac{U_{n}(x)}{U_{n}(1)}\right)^{2} \\
& \quad+\left(G_{n}\left(P_{n},-1\right)-P_{n}(-1)\right) \frac{1-x}{2}\left(\frac{U_{n}(x)}{U_{n}(-1)}\right)^{2} \\
& \quad+\sum_{k=1}^{n} P_{n}\left(x_{k}\right) \frac{3 x_{k}}{1-x_{k}^{2}} \sigma_{k}(x)-\sum_{k=1}^{n} P_{n}^{\prime}\left(x_{k}\right) \sigma_{k}(x),
\end{aligned}
$$

with (4), (5), (7)-(10), we can get the required result.

3. Remarks

For $\lambda \leq-1$, there exist an $f_{0}(x) \in C_{[-1,1]}$ such that

$$
\begin{equation*}
\int_{-1}^{1}\left|G_{n}\left(f_{0}, x\right)-f_{0}(x)\right|\left(\sqrt{1-x^{2}}\right)^{\lambda} d x \nrightarrow 0, n \rightarrow \infty \tag{11}
\end{equation*}
$$

In fact, take $f_{0}(x)=1$, then we have

$$
G_{n}\left(f_{0}, x\right)-f_{0}(x)=\frac{3}{2} \frac{n-1}{(n+1)^{2}} U_{n}^{2}(x)+\sum_{k=1}^{n} \frac{3 x_{k}}{1-x_{k}^{2}} \sigma_{k}(x) .
$$

When $\lambda \geq-1$, by Lemma 4 we have

$$
\begin{aligned}
\int_{-1}^{1} \frac{3}{2} \frac{n-1}{(n+1)^{2}} U_{n}^{2}(x)\left(\sqrt{1-x^{2}}\right)^{\lambda} d x & \geq \frac{C}{n} \int_{0}^{\pi} \frac{\sin ^{2} n \theta}{\sin ^{1-\lambda} \theta} d \theta \\
& \geq \begin{cases}C, & \lambda=-1, \\
C_{\lambda} n^{-1-\lambda}, & -1<\lambda<0, \\
C \log n / n, & \lambda=0, \\
C_{\lambda} n^{-1}, & \lambda>0,\end{cases}
\end{aligned}
$$

together with (9), we have

$$
\int_{-1}^{1}\left|\sum_{k=1}^{n} \frac{3 x_{k}}{1-x_{k}^{2}} \sigma_{k}(x)\right|\left(\sqrt{1-x^{2}}\right)^{\lambda} d x=o\left(\int_{-1}^{1} \frac{3}{2} \frac{n-1}{(n+1)^{2}} U_{n}^{2}(x)\left(\sqrt{1-x^{2}}\right)^{\lambda} d x\right),
$$

that means, (11) holds for $\lambda=-1$.
The above estimates also show that our results are sharp for $\lambda>-1$.
We conclude that the result of [2] is a special case $\lambda=0$ of our theorem.

References

[1] Z. Ditzian and V. Totik, Moduli of smoothness, Spring-Verlag, Berlin, (1987).
[2] Y. L. Luo, Y. Z. Gao and Q. Wang, The rate of L^{1}-convergence of Grünwald interpolatory operators, Pure Appl. Math., 14(3)(1998), 55-59 (in Chinese).
[3] G. Min, On Grünwald interpolatory operators and its application, J. Math. Res. Exposition, 9(1989), 442-446 (in Chinese).
[4] G. Min, On L^{1}-convergence of Grünwald interpolatory operators, Advan. Math. (China), 18(1989), 485-490 (in Chinese).
[5] P. Nevai and P. Vertesi, Mean convergence of Hermite-Fejér interpolation, J. Math. Anal. Appl., 105(1985), 26-53.
[6] G. Q. Xu and Y. P. Liu, The rate of L^{2}-convergence of a kind of quasi-Grünwald interpolatory operators, J. Math. Engin., 17(2)(2000), 19-24.

