On Some Polynomials with Weighted Sums

Seon-Hong Kim ${ }^{+}$

Abstract

Abstract. In this note, we study a generalization of a certain polynomial $z^{n}-\sum_{k=0}^{n-1} a_{k} z^{k}$, where $\sum_{k=0}^{n-1} a_{k}=1, a_{k} \geq 0$ for each k, whose all zeros except for $z=1$ lie on the circle of radius $1 / 2$ with center at the origin.

Keywords: Polynomial, Weighted Sum

1. Introduction

Throughout this paper, n is an integer $\geq 3, p>1$, and we denote $C(r)$ by the circle of radius r with center at the origin. All polynomials in this paper will be assumed to have real coefficients. It follows from Eneström-Kakeya theorem for the statement and its proof ${ }^{[1]}$ to

$$
\begin{equation*}
\frac{z^{n}-\sum_{k=0}^{n-1} a_{k} z^{k}}{z-1} \tag{1}
\end{equation*}
$$

where $\sum_{k=0}^{n-1} a_{k}=1, a_{k} \geq 0$ for each k that all zeros of (1) do not lie outside $C(1) . \mathrm{Kim}^{[2]}$ studied polynomials of type (1),

$$
z^{n}-\sum_{k=0}^{n-1} a_{k} z^{k}
$$

whose all zeros except for $z=1$ lie on $C(1 / p)$, where $p>1$. For convenience, we call these polynomials $C(1 / p)$-polynomials, and $\sum_{k=0}^{n-1} a_{k} z^{k}$ their weighted sums, respectively. $\operatorname{Kim}^{[2]}$ showed that, given $p>1$, there exist $C(1 / p)$-polynomials whose degree of weighted sum is

Department of Mathematics, Sookmyung Women's University, Seoul, 140-742 Korea
${ }^{\dagger}$ Corresponding author : shkim17@sookmyung.ac.kr (Received: January 18, 2017, Accepted: March 25, 2017)
$n-1$. However, by estimating some coefficients of lacunary polynomials, he obtained sufficient conditions for nonexistence of certain lacunary $C(1 / p)$ -polynomials. Perhaps the most basic example of $C(1 / 2)$-polynomials is

$$
\begin{equation*}
z^{2 n+1}-\frac{1}{2^{2 n}}\left(1+\sum_{k=1}^{2 n} 2^{k-1} z^{k}\right) \tag{2}
\end{equation*}
$$

For this, see Proposition 1 of [2]. In this paper, we study a generalization

$$
p(z)=z^{2 n+1}-\frac{1}{2^{2 n}}\left(1+\sum_{k=1}^{2 n} 2^{k-1} z^{k}+t z^{n}-t z^{n+1}\right)
$$

of the polynomial (2).

2. Results and Questions

The polynomial

$$
p(z)=z^{2 n+1}-\frac{1}{2^{2 n}}\left(1+\sum_{k=1}^{2 n} 2^{k-1} z^{k}+t z^{n}-t z^{n+1}\right)
$$

can be computed by
$p(z)=\frac{1}{2^{2 n}(2 z-1)}(z-1)\left(2^{2 n+1} z^{2 n+1}+2 t z^{n+1}-t z^{n}-1\right)$.

For rare choices of t, the polynomial $p(z)$ are nicely factored. For example,

$$
p(z)= \begin{cases}\frac{1}{2^{2 n}(2 z-1)}(z-1)\left((2 z)^{n}+1\right)\left((2 z)^{n+1}-1\right), & t=2^{n} \\ \frac{1}{2^{2 n}(2 z-1)}(z-1)\left((2 z)^{n}-1\right)\left((2 z)^{n+1}+1\right), & t=-2^{n}\end{cases}
$$

Less nice examples are when $t=-2^{2 n+1}+1$,

$$
\begin{aligned}
p(x)= & \frac{1}{2^{2 n}(2 z-1)}(z-1)^{2} \\
& \left(2^{2 n+1}\left(z^{2 n}+z^{2 n-1}+\cdots+z^{n+1}\right)\right. \\
+ & \left.\left(2-2^{2 n+1}\right) z^{n}+z^{n-1}+\cdots+z+1\right)
\end{aligned}
$$

and when $t=-2^{n}(2 n+1)$,

$$
p(z)=\frac{1}{2^{2 n+1}}\left(z-\frac{1}{2}\right)^{2} u(z)
$$

where

$$
\begin{aligned}
u(z)= & 2^{2 n+1} z^{2 n-2}+\left(\sum_{k=1}^{2} k\right) 2^{2 n} z^{2 n-3}+\left(\sum_{k=1}^{3} k\right) 2^{2 n-1} z^{2 n-4} \\
& +\left(\sum_{k=1}^{4} k\right) 2^{2 n-2} z^{2 n-5}+\cdots+\left(\sum_{k=1}^{n} k\right) 2^{n+2} z^{n-1} \\
& +\left(\sum_{k=1}^{n-1} k\right) 2^{n+1} z^{n-2}+\left(\sum_{k=1}^{n-2} k\right) 2^{n} z^{n-3}+\cdots \\
& +\left(\sum_{k=1}^{3} k\right) 2^{5} z^{2}+\left(\sum_{k=1}^{2} k\right) 2^{4} z+2^{3} .
\end{aligned}
$$

A polynomial $P(z)$ of degree n is said to be self-reciprocal if it satisfies $P(z)=z^{n} P(1 / z)$. The zeros of a self-reciprocal polynomial either lie on $C(1)$ or occur in pairs conjugate to $C(1)$. Cohn obtained a sufficient condition for a self-reciprocal polynomial $P(z)$ to have all its zeros on $C(1)$; if all zeros of $P^{\prime}(z)$ lie in $|z| \leq 1$, then all zeros of $P(z)$ lie on $C(1)$. For this ${ }^{[3]}$, see p. 230 of [3]. Using this and Eneström-Kakeya theorem, we can prove the following.

Proposition 1 If $-2^{n} / n \leq t \leq 2^{n} / n$, then $p(z)$ has all its zeros except for 1 lying on $C(1 / 2)$.

Proof Let

$$
f(z)=2^{2 n+1} z^{2 n+1}+2 t z^{n+1}-t z^{n}-1
$$

that is the last factor of $p(z)$ in (3). Observe that $f(1 / 2)=0$, and for $z \neq 1 / 2,1$, the zeros of the polynomial $p(z)$ satisfy $f(z)=0$. Assume that $z \neq 1 / 2,1$. Then

$$
\begin{aligned}
p(z)=0 & \Leftrightarrow 2^{2 n+1} z^{2 n+1}=2+\sum_{k=1}^{2 n} 2^{k} z^{k}+2 t z^{n}-2 t z^{n+1} \\
& \Leftrightarrow 2^{2 n+1} z^{2 n+1}-2 t z^{n}+2 t z^{n+1}-1=1+\sum_{k=1}^{2 n} 2^{k} z^{k} \\
& \Leftrightarrow-t z^{n}=1+\sum_{k=1}^{2 n} 2^{k} z^{k} \Leftrightarrow 1+\sum_{k=1}^{2 n} 2^{k} z^{k}+t z^{n}=0
\end{aligned}
$$

Let $g(z)=1+\sum_{k=1}^{2 n} 2^{k} z^{k}+t z^{n}$. Changing variable $y=2 z$, we have

$$
\begin{aligned}
g(y)= & 1+y+y^{2}+\cdots+y^{n-1} \\
& +\left(1+t / 2^{n}\right) y^{n}+y^{n+1}+\cdots+y^{2 n}
\end{aligned}
$$

that is self-reciprocal. Then

$$
\begin{aligned}
g^{\prime}(y) & =2 n y^{2 n-1}+(2 n-1) y^{2 n-2}+\cdots \\
& +(n+1) y^{n}+n\left(1+t / 2^{n}\right) y^{n-1} \\
& +(n-1) y^{n-2}+\cdots+2 y+1
\end{aligned}
$$

So if $n+1 \geq n\left(1+t / 2^{n}\right) \geq n-1$, i.e. $-2^{n} / n$ $\leq t \leq 2^{n} / n$, then by Eneström-Kakeya theorem and Cohn's theorem, $g(y)$ has all its zeros on $C(1)$, which implies the result.

Remark 2. By Proposition 1, the zeros of $p(z)$ lie on $C(1 / 2)$ for a wide range of values of t. But it follows from numerical computations that for t sufficiently large, the zeros start to leave $C(1 / 2)$. But it seems that $p(z)$ with large t mostly form pairs of zeros α, β such that $\sqrt{|\alpha \beta|}=1 / 2$. Thus they "remember" the circle $C(1 / 2)$.

The polynomial $p(z)$ seems to have the discriminant with three nice factors. Perhaps the discriminant has only real zeros. More specifically, we conjecture the following.

Conjecture 3 The discriminant of the polynomial $p(z)$ is

$$
\begin{aligned}
\Delta_{z}(p(z))= & (-1)^{\frac{n(n+1)}{2}} \frac{1}{2^{4 n\left(n+\left[\frac{n+1}{2}\right]\right)}\left(t+(-1)^{n} 2^{n}\right)} \\
& \left(t+2^{n}(2 n+1)\right)\left(t+\left(2^{2 n+1}-1\right)\right)^{2} a(t)^{2},
\end{aligned}
$$

where $a(t)$ is a polynomial of degree $n-1$ with integer coefficients whose all zeros are real.

References

[1] M. Marden, "Geometry of polynomials, mathematical surveys number 3", American Mathematical Society, Providence, Rhode Island, p. 136, 1966.
[2] S.-H. Kim, "Polynomials with weighted sum", Publ. Math-Debrecen, Vol. 66, pp. 303-311, 2005.
[3] T. Sheil-Small, "Complex polynomials", Cambridge University Press, Cambridge, p. 230, 2002.

