• Title/Summary/Keyword: Zero-sequence harmonic

Search Result 36, Processing Time 0.022 seconds

New series Active power filtering system to reduce the harmonic in 3-Phase 3-Wire system (3상 3선식 전력계통의 고조파 저감을 위한 새로운 직렬형 능동 필터 시스템)

  • 한윤석
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.119-122
    • /
    • 2000
  • This paper presents a new compensation method of series active power filter. The proposed method applied in the three-phase three-wire system can generate harmonic compensation voltage in front of the harmonic source. Futhermore it is also expended to three-phase four-wire system considering zero-sequence voltage. The compensation principle is described in detail. Experimental result show the validity of the proposed method in the three-phase three-wire system

  • PDF

A Study on the NGR problem for harmonic in Distribution system (배전계통의 고조파에 의한 NGR의 문제점에 관한 연구)

  • Park Hee Chul;Cho Nam Hun;Kang Moon Ho;Wang Young peel
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.480-482
    • /
    • 2004
  • This paper presents a study on the NGR problem for harmonic in distribution systems. Overheating of NGR (Neutral Ground reactor), by neutral current in distribution system, is important cause of transformer breakdown of substation. Countermeasures about zero-sequence component harmonic in neutral line are required.

  • PDF

Harmonics Analysis and Reduction of Incheon International Airport (인천국제공항 여객터미널의 고조파분석에 의한 저감대책 강구)

  • Kim, Young-Ha;Lee, Sung-Jun;Kim, Dong Kun;Oh, Suk-Hyun;Kim, Mi-Ye
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.1
    • /
    • pp.87-93
    • /
    • 2005
  • In this paper, we perform the harmonic filter design for Incheon international airport, especially passenger terminal based on the results of measurement and analysis. Also, we show the waveform of machines which produce harmonics as a harmonic source. For harmonic filter design, we propose the APF(Active Power Filter) and ZSF(Zero Sequence Filter) design. Also, we simulate the filter effects using EDSA package. The results show the effectiveness of the method.

Performance Improvement of an Active Neutral Harmonic Suppressor System Under Unbalanced Load Conditions

  • Choi, Se-Wan;Jang, Min-Soo
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.822-828
    • /
    • 2001
  • Three-phase four-wire electrical distribution systems are widely employed in manufacturing plants, commercial and residential buildings. Due to the nonlinear loads connected to the distribution system, the neutral conductor carries excessive harmonic currents even under balanced loading since the triplen harmonics in phase currents do not cancel each other. This may result in wiring failure of the neutral conductor and overloading of the distribution transformer. In response to these concerns, a cost-effective neutral current harmonic suppressor system has been proposed [6]. This paper proposes an improved control method for the harmonic suppressor system under unbalanced load conditions. The proposed control method compensates for only the harmonic components in the neutral conductor, and the zero-sequence fundamental component due to unbalanced loading is prevented from flowing through the harmonic suppressor system. This remedies overloading and power loss of the system. The experimental results on a prototype validate the proposed control approach.

  • PDF

The Development of 30KVA IGBT-type Customer STATCOM (수용가용 30kVA급 IGBT형 STATCOM 개발)

  • Lim, Su-Saeng;Lee, Eun-Woong;Kim, J.K.;Sohn, H.K.;Cho, H.K.;Jeong, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.657-659
    • /
    • 2002
  • Power quality refers to voltage quality and current quality. Voltage quality means supply reliance such as voltage sag, voltage swell. and short-time interruption. Current quality is related to power factor, harmonic distortion, negative-sequence and zero-sequence current. We fabricated Customer STATCOM to improve current quality such as reactive power, harmonic distortion, and load imbalance. In this paper. We summarize the spec, of STATCOM. its hardware configuration, and control system.

  • PDF

Shunt Active Filter for Multi-Level Inverters Using DDSRF with State Delay Controller

  • Rajesh, C.R.;Umayal, S.P.
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.863-870
    • /
    • 2018
  • The traditional power control theories for the harmonic reduction methods in multilevel inverters are found to be unreliable under unbalanced load conditions. The unreliability in harmonic mitigation is caused by voltage fluctuations, non-linear loads, the use of power switches, etc. In general, the harmonics are reduced by filters. However, such devices are an expensive way to provide a smooth and fast response to secure power systems during dynamic conditions. Hence, the Decoupled Double Synchronous Reference Frame (DDSRF) theory combined with a State Delay Controller (SDC) is proposed to achieve a harmonic reduction in power systems. The DDSRF produces a sinusoidal harmonic that is the opposite of the load harmonic. Then, it injects this harmonic into power systems, which reduces the effect of harmonics. The SDC is used to reduce the delay between the compensation time for power injection and the generation of a reference signal. The proposed technique has been simulated using MATLAB and its reliability has been verified experimentally under unbalanced conditions.

A Novel Six-Level Inverter Topology with Capacitor Voltage Self-Balancing (커패시터 전압 자기 밸런싱 기능이 있는 새로운 6-레벨 인버터 토폴로지)

  • Pribadi, Jonathan;Lee, Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.316-317
    • /
    • 2020
  • In this paper, a novel six-level inverter is proposed. Voltage regulation is applied at DC-link and flying capacitors through the implementation of phase-shifted carrier-based modulation with zero-sequence voltage injection. The performance of the proposed structure has been verified under various modulation indices, where low voltage ripple is achieved at each capacitor and total harmonic distortions (THD) of line voltage at unity modulation index is about 15.95%.

  • PDF

Advanced Static Over-modulation Scheme using Offset Voltages Injection for Simple Implementation and Less Harmonics

  • Lee, Dong-Myung
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.138-145
    • /
    • 2015
  • In this paper, a novel static overmodulation scheme (OVM) for space-vector PWM (SVPWM) is proposed. The proposed static OVM scheme uses the concept of adding offset voltages in linear region as well as overmodulation region to fully utilize DC-link voltage. By employing zero sequence voltage injection, the proposed scheme reduces procedures for achieving SVPWM such as complicated gating time calculation. In addition, this paper proposes a stepwise discontinuous angle movement in high modulation region in order to reduce Total Harmonic Distortion (THD). The validity of the proposed scheme is verified through theoretical analysis and experimental results.

Comparison of Efficiency for Different Switching Tables in Six-Phase Induction Motor DTC Drive

  • Taheri, Asghar;Rahmati, Abdolreza;Kaboli, Shahriyar
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.128-135
    • /
    • 2012
  • In this paper, different switching tables proposed for the Direct Torque Controlled (DTC) of a six-phase induction machine are simulated and implemented. A six-phase induction motor has 64 space voltage vectors which result in increased complexity in the selecting of inverters switching. The unsuitable selection of a switching table leads to large harmonics especially at low speed and it also reduces drive efficiency. A six-phase induction machine has large zero sequence harmonic currents of the order $6{\kappa}{\pm}1$. These harmonic currents are varied in various techniques. Decreasing this loss is essential in a six-phase induction machine. The main purpose of this paper is to improve the ST-DTC of six-phase induction machines to reduce the voltage and current harmonics and the torque pulsation. Selecting a suitable method for minimizing these harmonics is very important.

A Comparison of Control Algorithms for a Doubly Fed Induction Generator in Medium-voltage Wind Power System under Unbalanced Conditions

  • Go, Yu-Ran;Park, Hyeon-Cheol;Zhu, Yaqiong;Suh, Yong-Sug
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.194-195
    • /
    • 2010
  • This paper investigates control algorithms for a doubly fed induction generator (DFIG) with back-to-back converter in medium-voltage wind power system under unbalanced grid conditions. Operation of DFIG under unbalanced grid conditions causes several problems such as overcurrent, unbalanced currents, active power pulsation and torque pulsation. Three different control algorithms to compensate for the unbalanced conditions have been investigated with respect to four performance factors; fault ride-through capability, efficiency, harmonic distortions and torque pulsation. The control algorithm having zero amplitude of negative sequence current shows the most cost-effective performance concerning fault ride-through capability and efficiency. The control algorithm for nullifying the oscillating component of the instantaneous active power generates least harmonic distortions. Combination of these two control algorithms depending on the operating requirements presents most optimized performance factors under the generalized unbalanced operating conditions.

  • PDF