• 제목/요약/키워드: Zero-divisor graph

검색결과 37건 처리시간 0.019초

The Zero-divisor Graph of ℤn[X]]

  • Park, Min Ji;Kim, Eun Sup;Lim, Jung Wook
    • Kyungpook Mathematical Journal
    • /
    • 제60권4호
    • /
    • pp.723-729
    • /
    • 2020
  • Let ℤn be the ring of integers modulo n and let ℤn[X]] be either ℤn[X] or ℤn[[X]]. Let 𝚪(Zn[X]]) be the zero-divisor graph of ℤn[X]]. In this paper, we study some properties of 𝚪(ℤn[X]]). More precisely, we completely characterize the diameter and the girth of 𝚪(ℤn[X]]). We also calculate the chromatic number of 𝚪(ℤn[X]]).

THE TOTAL GRAPH OF NON-ZERO ANNIHILATING IDEALS OF A COMMUTATIVE RING

  • Alibemani, Abolfazl;Hashemi, Ebrahim
    • 대한수학회논문집
    • /
    • 제33권2호
    • /
    • pp.379-395
    • /
    • 2018
  • Assume that R is a commutative ring with non-zero identity which is not an integral domain. An ideal I of R is called an annihilating ideal if there exists a non-zero element $a{\in}R$ such that Ia = 0. S. Visweswaran and H. D. Patel associated a graph with the set of all non-zero annihilating ideals of R, denoted by ${\Omega}(R)$, as the graph with the vertex-set $A(R)^*$, the set of all non-zero annihilating ideals of R, and two distinct vertices I and J are adjacent if I + J is an annihilating ideal. In this paper, we study the relations between the diameters of ${\Omega}(R)$ and ${\Omega}(R[x])$. Also, we study the relations between the diameters of ${\Omega}(R)$ and ${\Omega}(R[[x]])$, whenever R is a Noetherian ring. In addition, we investigate the relations between the diameters of this graph and the zero-divisor graph. Moreover, we study some combinatorial properties of ${\Omega}(R)$ such as domination number and independence number. Furthermore, we study the complement of this graph.

LINE GRAPHS OF UNIT GRAPHS ASSOCIATED WITH THE DIRECT PRODUCT OF RINGS

  • Pirzada, S.;Altaf, Aaqib
    • Korean Journal of Mathematics
    • /
    • 제30권1호
    • /
    • pp.53-60
    • /
    • 2022
  • Let R be a finite commutative ring with non zero identity. The unit graph of R denoted by G(R) is the graph obtained by setting all the elements of R to be the vertices of a graph and two distinct vertices x and y are adjacent if and only if x + y ∈ U(R), where U(R) denotes the set of units of R. In this paper, we find the commutative rings R for which G(R) is a line graph. Also, we find the rings for which the complements of unit graphs are line graphs.

THE ANNIHILATOR IDEAL GRAPH OF A COMMUTATIVE RING

  • Alibemani, Abolfazl;Bakhtyiari, Moharram;Nikandish, Reza;Nikmehr, Mohammad Javad
    • 대한수학회지
    • /
    • 제52권2호
    • /
    • pp.417-429
    • /
    • 2015
  • Let R be a commutative ring with unity. The annihilator ideal graph of R, denoted by ${\Gamma}_{Ann}(R)$, is a graph whose vertices are all non-trivial ideals of R and two distinct vertices I and J are adjacent if and only if $I{\cap}Ann(J){\neq}\{0\}$ or $J{\cap}Ann(I){\neq}\{0\}$. In this paper, we study some connections between the graph-theoretic properties of this graph and some algebraic properties of rings. We characterize all rings whose annihilator ideal graphs are totally disconnected. Also, we study diameter, girth, clique number and chromatic number of this graph. Moreover, we study some relations between annihilator ideal graph and zero-divisor graph associated with R. Among other results, it is proved that for a Noetherian ring R if ${\Gamma}_{Ann}(R)$ is triangle free, then R is Gorenstein.

A TORSION GRAPH DETERMINED BY EQUIVALENCE CLASSES OF TORSION ELEMENTS AND ASSOCIATED PRIME IDEALS

  • Reza Nekooei;Zahra Pourshafiey
    • 대한수학회보
    • /
    • 제61권3호
    • /
    • pp.797-811
    • /
    • 2024
  • In this paper, we define the torsion graph determined by equivalence classes of torsion elements and denote it by AE(M). The vertex set of AE(M) is the set of equivalence classes {[x] | x ∈ T(M)*}, where two torsion elements x, y ∈ T(M)* are equivalent if ann(x) = ann(y). Also, two distinct classes [x] and [y] are adjacent in AE(M), provided that ann(x)ann(y)M = 0. We shall prove that for every torsion finitely generated module M over a Dedekind domain R, a vertex of AE(M) has degree two if and only if it is an associated prime of M.

THE TOTAL GRAPH OF A COMMUTATIVE RING WITH RESPECT TO PROPER IDEALS

  • Abbasi, Ahmad;Habibi, Shokoofe
    • 대한수학회지
    • /
    • 제49권1호
    • /
    • pp.85-98
    • /
    • 2012
  • Let R be a commutative ring and I its proper ideal, let S(I) be the set of all elements of R that are not prime to I. Here we introduce and study the total graph of a commutative ring R with respect to proper ideal I, denoted by T(${\Gamma}_I(R)$). It is the (undirected) graph with all elements of R as vertices, and for distinct x, y ${\in}$ R, the vertices x and y are adjacent if and only if x + y ${\in}$ S(I). The total graph of a commutative ring, that denoted by T(${\Gamma}(R)$), is the graph where the vertices are all elements of R and where there is an undirected edge between two distinct vertices x and y if and only if x + y ${\in}$ Z(R) which is due to Anderson and Badawi [2]. In the case I = {0}, $T({\Gamma}_I(R))=T({\Gamma}(R))$; this is an important result on the definition.

ON GRAPHS ASSOCIATED WITH MODULES OVER COMMUTATIVE RINGS

  • Pirzada, Shariefuddin;Raja, Rameez
    • 대한수학회지
    • /
    • 제53권5호
    • /
    • pp.1167-1182
    • /
    • 2016
  • Let M be an R-module, where R is a commutative ring with identity 1 and let G(V,E) be a graph. In this paper, we study the graphs associated with modules over commutative rings. We associate three simple graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ to M called full annihilating, semi-annihilating and star-annihilating graph. When M is finite over R, we investigate metric dimensions in $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$. We show that M over R is finite if and only if the metric dimension of the graph $ann_f({\Gamma}(M_R))$ is finite. We further show that the graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ are empty if and only if M is a prime-multiplication-like R-module. We investigate the case when M is a free R-module, where R is an integral domain and show that the graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ are empty if and only if $$M{\sim_=}R$$. Finally, we characterize all the non-simple weakly virtually divisible modules M for which Ann(M) is a prime ideal and Soc(M) = 0.