A TORSION GRAPH DETERMINED BY EQUIVALENCE CLASSES OF TORSION ELEMENTS AND ASSOCIATED PRIME IDEALS

Reza Nekooei and Zahra Pourshafiey

Abstract

In this paper, we define the torsion graph determined by equivalence classes of torsion elements and denote it by $A_{E}(M)$. The vertex set of $A_{E}(M)$ is the set of equivalence classes $\left\{[x] \mid x \in T(M)^{*}\right\}$, where two torsion elements $x, y \in T(M)^{*}$ are equivalent if $\operatorname{ann}(x)=$ $\operatorname{ann}(y)$. Also, two distinct classes $[x]$ and $[y]$ are adjacent in $A_{E}(M)$, provided that $\operatorname{ann}(x) \operatorname{ann}(y) M=0$. We shall prove that for every torsion finitely generated module M over a Dedekind domain R, a vertex of $A_{E}(M)$ has degree two if and only if it is an associated prime of M.

1. Introduction

Throughout this paper, all rings are commutative with identity and all modules are unitary. An element x of an R-module M is called a torsion element if it has a non-zero annihilator in R. Let $T(M)$ be the set of torsion elements of M. It is clear that if R is an integral domain, then $T(M)$ is a submodule of M. We call $T(M)$ the torsion submodule of M. If $T(M)=M$, then M is called a torsion module. For every subset X of R (or M), we define $X^{*}=X-\{0\}$. Recall that a prime ideal P is an associated prime of R (or M) if $P=\operatorname{ann}(x)$ for some non-zero element $x \in R$ (or $x \in M$). The set of all associated primes of a $\operatorname{ring} R$ (or R-module M) is denoted by $\operatorname{Ass}(R)$ (or $\operatorname{Ass}(M)$). It is well known that for a finitely generated module M over a Noetherian $\operatorname{ring} R, \operatorname{Ass}(R)$ and $\operatorname{Ass}(M)$ are both finite.

A Dedekind domain is a Noetherian integrally closed domain in which every non-zero prime ideal is maximal. If R is a Dedekind domain, then for every nonzero prime ideal P of R, R_{P} is a $D V R$ [2, Theorem 9.3]. Also every non-zero ideal I of a Dedekind domain R can be uniquely expressed by $I=P_{1}^{n_{1}} \cdots P_{r}^{n_{r}}$, where $P_{i}(1 \leq i \leq r)$ are prime ideals of R containing I [2, Corollary 9.4].

[^0]A graph G consists of a set of vertices $V(G)$ and a set of edges $E(G)$ consisting of pairs of vertices. We consider simple graphs, that is, graphs without loops and parallel edges. Two vertices of a graph are said to be connected if there is a path between them. A graph G is connected if any two distinct vertices are connected. The distance $d(x, y)$ between connected vertices x and y is the length of a shortest path from x to y; if there is no such a path we write $d(x, y)=\infty$. The diameter of a connected graph G is the supremum of the distances between vertices. The diameter is 0 if the graph consists of a single vertex. For a graph G, the degree $\operatorname{deg}(v)$ of a vertex v in G is the number of edges incident to v. We denote the complete graph with n vertices and a complete bipartite graph with two parts of sizes m and n, by K_{n} and $K_{m, n}$, respectively. The complete bipartite graph $K_{1, n}$ is called a star graph. A cycle graph C_{n} is a path from v_{1} to v_{n} such that $v_{1}=v_{n}$. Two graphs G and H are isomorphic if there is a bijection f from $V(G)$ onto $V(H)$ such that two vertices x and y of G are adjacent if and only if the vertices $f(x)$ and $f(y)$ of H are adjacent. A colour-partition of a graph G is a partition of $V(G)$ into colour-classes V_{1}, \ldots, V_{l} such that no $V_{i}(1 \leq i \leq l)$, contains a pair of adjacent vertices. In other words, the induced subgraphs $\left\langle V_{i}\right\rangle$ have no edges. The chromatic number of G, denoted by $\nu(G)$, is the least natural number l for which such a partition is possible. A subset X of the vertices of G is called a clique if the induced subgraph on X is a complete graph. The clique number of G is $\chi(G)=n$ if G contains a clique with n elements and no clique has more than n elements. If the sizes of the cliques are not bounded, then $\chi(G)=\infty$. We always have $\chi(G) \leq \nu(G)$.

The notion of a zero-divisor graph $G(R)$ of a ring R was introduced by I. Beck in [3]. The vertices of the graph $G(R)$ are the elements of R and two distinct vertices r and s are adjacent provided that $r s=0$. The first simplification of Beck's zero-divisor graph $\Gamma(R)$ was introduced by D. F. Anderson and P. S. Livingston in [1]. This zero-divisor graph helps us study the algebraic properties of rings using graph theoretical tools. S. B. Mulay [8] introduced the zero-divisor graph $\Gamma_{E}(R)$ associated with a ring. For a ring R, two zerodivisors $r, s \in Z(R)^{*}$ are said to be equivalent if $\operatorname{ann}(r)=\operatorname{ann}(s)$, where $Z(R)$ is the set of all zero-divisors of R. The equivalence class of r is denoted by $[r]$. The set of vertices of the graph $\Gamma_{E}(R)$ is the set of equivalence classes $\left\{[r] \mid r \in Z(R)^{*}\right\}$. Distinct classes $[r]$ and $[s]$ are adjacent in $\Gamma_{E}(R)$ provided that $r s=0$ in R.

We follow the ideas from Mulay, Spiroff and Wickham in [9], who studied the graph of equivalence classes of zero-divisors of a ring R. This graph has some advantages over the earlier zero-divisor graph $\Gamma(R)$. In many cases, $\Gamma_{E}(R)$ is finite even when $\Gamma(R)$ is infinite. In addition, there are no complete graphs $\Gamma_{E}(R)$ with three or more vertices, since the graph collapses into a single point. Every vertex in this graph either corresponds to an associated prime or is connected to one.

In this paper we extend this concept to modules, i.e., we define a graph and derive relationships between the associated primes of M and its graphtheoretic properties. In [6], the concept of the zero-divisor graph for a ring has been extended to a module and the authors defined the torsion graph $\Gamma(M)$ of an R-module M as one whose vertices are the non-zero torsion elements of M and two distinct vertices x and y are adjacent if $[x: M][y: M] M=0$. Here we define a graph whose set of vertices is the set of equivalence classes $\{[x] \mid$ $\left.x \in T(M)^{*}\right\}$, and two distinct torsion elements $x, y \in T(M)^{*}$ are equivalent if $\operatorname{ann}(x)=\operatorname{ann}(y)$. Also, two distinct classes $[x]$ and $[y]$ are adjacent provided that ann (x) ann $(y) M=0$. This graph will be denoted by $A_{E}(M)$. We say an ideal I of R is an annihilating-ideal if there exists a non-zero ideal J of R such that $I J=(0)$. We denote the set of annihilating-ideals of R by $\mathbb{A}(R)$. By the annihilating-ideal graph $\mathbb{A} \mathbb{G}(R)$ of R we mean the graph with vertices $\mathbb{A}(R)^{*}=\mathbb{A}(R)-\{0\}$ such that there is an edge between vertices I and J if and only if $I \neq J$ and $I J=(0)[4,5]$. For an R-module M (a ring R), we denote the set of all $\operatorname{ann}(x)$ such that $0 \neq x \in M(R)$, by $\Omega_{R}(M)(\Omega(R))$. There is a natural bijective map from $\Omega_{R}(M)$ (or $\Omega(R)$) to the set of vertices of $A_{E}(M)$ (or $A_{E}(R)$) given by $I \rightarrow[x]$, where $I=\operatorname{ann}(x)$. We will slightly abuse terminology and refer to $[x]$ as an element of $\Omega_{R}(M)(\Omega(R))$.

In Section 1, we define the graph $A_{E}(M)$, discuss the relation between the associated primes of M and the vertices of $A_{E}(M)$ and prove some basic results about $A_{E}(M)$ and $A_{E}(R)$. In Section 2, we show that a vertex of $A_{E}(M)$ has degree two if and only if it is an associated prime of M. We then determine $\nu\left(A_{E}(M)\right)$, where $\left|V\left(A_{E}(M)\right)\right|>1$ and prove that the chromatic number of $A_{E}(M)$ equals its clique number.

2. The definition and some results about $A_{E}(M)$ and $A_{E}(R)$

Let M be an R-module. For every $x, y \in M$, we say that $x \sim y$ if $\operatorname{ann}(x)=$ $\operatorname{ann}(y)$. The relation " \sim " is an equivalence relation. The equivalence class of x is denoted by $[x]$.

Definition. The graph of equivalence classes of torsion elements of an R module M, denoted by $A_{E}(M)$, is the graph whose vertices are the classes of elements in $T(M)^{*}$. Also, each pair of distinct classes $[x]$ and $[y]$ are joined by an edge if $\operatorname{ann}(x) \operatorname{ann}(y) M=0$.

Proposition 2.1. (i) Let R be a Noetherian ring and M be an R-module. If $V\left(A_{E}(M)\right)=\emptyset$, then R is an integral domain.
(ii) If R is an integral domain and M is a faithful R-module, then $E\left(A_{E}(M)\right)$ $=\emptyset$.

Proof. (i) Since R is a Noetherian ring, $\operatorname{Ass}(M) \neq \emptyset$. Let $P \in \operatorname{Ass}(M)$ be such that $\operatorname{ann}(x)=P \neq 0$. Thus $x \in T(M)^{*}$ and $[x] \in V\left(A_{E}(M)\right)$, which is a contradiction. So we have $P=0 \in \operatorname{Spec}(R)$ and R is an integral domain.
(ii) Now let $[x]$ and $[y] \in V\left(A_{E}(M)\right)$ be adjacent. Then $\operatorname{ann}(x) \operatorname{ann}(y)=$ 0 . Since R is an integral domain, $\operatorname{ann}(x)=0$ or $\operatorname{ann}(y)=0$, which is a contradiction. So $E\left(A_{E}(M)\right)=\emptyset$.

The converse of the first part of Proposition 2.1 is not true in general. For example for \mathbb{Z}-module $\mathbb{Z}_{n}, V\left(A_{E}\left(\mathbb{Z}_{n}\right)\right) \neq \emptyset$, but \mathbb{Z} is an integral domain.

In the following we give an example to illustrate the second part of the Proposition 2.1.
Example 2.2. The \mathbb{Z}-module $\frac{\mathbb{Q}}{\mathbb{Z}}$ is faithful and for every $\frac{a}{b}+\mathbb{Z} \in \frac{\mathbb{Q}}{\mathbb{Z}}$ such that $(a, b)=1$, we have $\operatorname{ann}\left(\frac{a}{b}+\mathbb{Z}\right)=b \mathbb{Z}$. Thus $V\left(A_{E}(M)\right)=\left\{\left.\left[\frac{1}{b}+\mathbb{Z}\right] \right\rvert\, b \in \mathbb{N}\right\}$ and we have $E\left(A_{E}(M)\right)=\emptyset$. Note that $\left|V\left(A_{E}(M)\right)\right|=\infty$ but $E\left(A_{E}(M)\right)=\emptyset$.

Proposition 2.3. Let M be an R-module and $\operatorname{ann}(M)=P \in \operatorname{Spec}(R)$. Then $A_{E}(M)$ is a star graph or $E\left(A_{E}(M)\right)=\emptyset$. Furthermore, if $P \in \operatorname{Max}(R)$, then $\left|V\left(A_{E}(M)\right)\right|=1$.

Proof. Assume that $E\left(A_{E}(M)\right) \neq \emptyset$. Then there exist $[x],[y] \in V\left(A_{E}(M)\right)$ such that $\operatorname{ann}(x) \operatorname{ann}(y) \subseteq P$. Since P is a prime ideal, we have $\operatorname{ann}(x) \subseteq P$ or $\operatorname{ann}(y) \subseteq P$. By assumption, $P \subseteq \operatorname{ann}(x)$ and $P \subseteq \operatorname{ann}(y)$, hence $a n n(x)=P$ or $\operatorname{ann}(y)=P$. Now suppose that $\operatorname{ann}(x)=P$. For every $[z] \in V\left(A_{E}(M)\right)$, $\operatorname{ann}(x) \operatorname{ann}(z) \subseteq P$ and hence $A_{E}(M)$ is a star graph. If $P \in \operatorname{Max}(R)$, then for every $x \in T(M)^{*}, P \subseteq \operatorname{ann}(x) \neq R$. So $P=\operatorname{ann}(x)$ and $\left|V\left(A_{E}(M)\right)\right|=1$.

Proposition 2.4. Let M be a module over a Noetherian ring R with $m, m^{\prime} \in$ Ass (M) such that m and m^{\prime} are the only maximal elements of $\Omega_{R}(M)$. If m and m^{\prime} are adjacent or there exists $x \in T(M)^{*}$ such that ann $(x)=\operatorname{ann}(M)$, then $A_{E}(M)$ is connected and $\operatorname{diam}\left(A_{E}(M)\right) \leq 2$.

Proof. Since R is Noetherian, for every $z \in T(M)^{*}$ we have $\operatorname{ann}(z) \subseteq m$ or $\operatorname{ann}(z) \subseteq m^{\prime}$. Since $m m^{\prime} \subseteq \operatorname{ann}(M)$, hence $[z]$ is adjacent to m or m^{\prime}. Therefore $A_{E}(M)$ is connected. Let $[z]$ be adjacent to m and $[w]$ adjacent to m^{\prime}. We have $\operatorname{ann}(z) m \subseteq m^{\prime}$ and $\operatorname{ann}(w) m^{\prime} \subseteq m$, hence $\operatorname{ann}(z) \subseteq m^{\prime}$ and $\operatorname{ann}(w) \subseteq m$. So $\operatorname{ann}(z) \operatorname{ann}(w) \subseteq m m^{\prime} \subseteq \operatorname{ann}(M)$ and hence $[z]$ and $[w]$ are adjacent. Therefore, $\operatorname{diam}\left(A_{E}(M)\right) \leq 2$. Now let $x \in T(M)^{*}$ be such that $\operatorname{ann}(x)=\operatorname{ann}(M)$. Since every vertex $[y]$ is adjacent to $[x]$, hence $A_{E}(M)$ is connected and $\operatorname{diam}\left(A_{E}(M)\right) \leq 2$.

Proposition 2.5. Let $B=\{P \in \operatorname{Ass}(M) \mid P$ is minimal in $\operatorname{Ass}(M)\}$.
(i) If $P, Q \in A s s(M) \backslash B$, then P and Q are not adjacent.
(ii) If $|B| \geq 3$, then no two elements of $\operatorname{Ass}(M)$ are adjacent.
(iii) If $B=\{P, Q\}$, then the only elements of $\operatorname{Ass}(M)$ that can be adjacent are P and Q.
(iv) If $A_{E}(M)$ is a complete graph, then $|A s s(M)| \leq 2$.

Proof. (i) Case 1: $B \neq \emptyset$. Suppose that T is minimal in $\operatorname{Ass}(M)$. If P and Q are adjacent, then $P Q \subseteq T$ and we have $P \subseteq T$ or $Q \subseteq T$, which is a contradiction.

Case 2: $B=\emptyset$. Since $P \notin B$, there exists $T \in A \operatorname{ss}(M)$ such that $T \subset P$. Suppose P and Q are adjacent. Then $P Q \subseteq T$ and we have $Q \subseteq T$. Since $Q \notin B$, there exists $S \in A s s(M)$ such that $S \subset Q$ and we have $P Q \subseteq S$. Thus $P \subseteq S$ and hence $P \subseteq S \subseteq Q \subseteq T$, which is a contradiction. So P and Q are not adjacent.
(ii) Let $P, Q \in \operatorname{Ass}(M)$. Since $|B| \geq 3$, there exists $T \in B$ such that $T \neq P$ and $T \neq Q$. Assume that P and Q are adjacent. Thus $P Q \subseteq T$, hence $P \subseteq T$ or $Q \subseteq T$. So $P=T$ or $Q=T$, which is a contradiction. Therefore P and Q are not adjacent.
(iii) Suppose $S, T \in \operatorname{Ass}(M)$ are adjacent. Then we have $T S \subseteq P$ and $T S \subseteq Q$. Hence $T \subseteq P$ or $S \subseteq P$ and $S \subseteq Q$ or $T \subseteq Q$. So $\{T, S\}=\{P, Q\}$.
(iv) Let $|\operatorname{Ass}(M)| \geq 3$ and $P, Q, T \in \operatorname{Ass}(M)$ be distinct three elements. Since $A_{E}(M)$ is a complete graph, P and Q are adjacent and hence by part (i), $P \in B$ or $Q \in B$. Let $P \in B$. Also Q and T are adjacent, hence $Q \in B$ or $T \in B$, which is a contradiction by parts (ii) and (iii).

Proposition 2.6. Let R be a Noetherian ring and $\left|V\left(A_{E}(R)\right)\right| \geq 3$. Then $A_{E}(R)$ is not a complete graph. In particular, for every $[z]$ such that ann (z) is a maximal element of $\Omega(R), \operatorname{deg}([z]) \leq 1$.
Proof. Suppose that $A_{E}(R)$ is a complete graph and $[x],[y]$ and $[z]$ are three distinct vertices such that $\operatorname{ann}(z)$ is a maximal element of $\Omega(R)$. We have $\operatorname{ann}(x) \operatorname{ann}(z)=0$ and $\operatorname{ann}(y) \operatorname{ann}(z)=0$. Then for every $r \in \operatorname{ann}(x)$ and $s \in \operatorname{ann}(z), r s=0$ and hence $\operatorname{ann}(z) \subseteq \operatorname{ann}(r)$. Now we have $\operatorname{ann}(z)=\operatorname{ann}(r)$ and so $[r]=[z]$. Since $r x=0,[r][x]=[r x]=0$ in $\Gamma_{E}(R)$. So $[z][x]=0$ and hence $z x=0$. Similarly, we have $y z=0$. It follows that $x, y \in \operatorname{ann}(z)$ and so $\operatorname{ann}(x) \subseteq \operatorname{ann}(y)$, because $\operatorname{ann}(x) \operatorname{ann}(z)=0$. Similarly, $\operatorname{ann}(y) \subseteq \operatorname{ann}(x)$ and hence $\operatorname{ann}(x)=\operatorname{ann}(y)$. Therefore $[x]=[y]$, which is a contradiction, so $A_{E}(R)$ is not a complete graph. In particular, for every $[z]$ such that $\operatorname{ann}(z)$ is a maximal element of $\Omega(R), \operatorname{deg}([z]) \leq 1$.

As the following example shows, for a ring R, we have always $V\left(A_{E}(R)\right)=$ $V\left(\Gamma_{E}(R)\right)$, but $A_{E}(R)$ and $\Gamma_{E}(R)$ are not necessary isomorphic.

Example 2.7. Let $R=\frac{\mathbb{Z}_{8}[x, y]}{\left\langle x^{2}, y^{2}, 2 x\right\rangle}$. Clearly, R is not a quotient of a Dedekind domain. Also $\operatorname{ann}(\bar{x})=\langle\bar{x}, \overline{2}\rangle$, ann $(\bar{y})=\langle\bar{y}\rangle$, ann $(\overline{2})=\langle\bar{x}, \overline{4}\rangle$, ann $(\overline{x y})=$ $\langle\bar{x}, \bar{y}, \overline{2}\rangle, a n n(\overline{2 y})=\langle\bar{x}, \bar{y}, \overline{4}\rangle, a n n(\overline{x+y})=\langle\overline{x-y}\rangle$ and $a n n(\overline{2+y})=\langle\overline{4 y}\rangle$. Clearly, $\Gamma_{E}(R)$ is not isomorphic with $A_{E}(R)$.

Proposition 2.8. Let D be a Dedekind domain and I be a non-zero ideal of R. If $R=\frac{D}{I}$, then $A_{E}(R) \cong \Gamma_{E}(R)$.

Proof. Since R is a quotient of a Dedekind domain, hence R is a PIR. If $x \in Z(R)^{*}$, there exists $a \in Z(R)^{*}$ such that $\operatorname{ann}(x)=\langle a\rangle$. We define the $\operatorname{map} f: V\left(A_{E}(R)\right) \longrightarrow V\left(\Gamma_{E}(R)\right)$ by $f([x])=[a]$. We shall show that f is one-to-one and onto. Let $[x],[y] \in V\left(A_{E}(R)\right), \operatorname{ann}(x)=\langle a\rangle$ and $\operatorname{ann}(y)=\langle b\rangle$. If $[x]=[y]$, then $\operatorname{ann}(x)=\operatorname{ann}(y)$ and hence $\langle a\rangle=\langle b\rangle$. So $[a]=[b]$. Therefore, f is well-defined. If $[a]=[b]$, then $\operatorname{ann}(a)=\operatorname{ann}(b)$. Since $\operatorname{ann}(x)=\langle a\rangle$ and $\operatorname{ann}(y)=\langle b\rangle, x \in \operatorname{ann}(a)=\operatorname{ann}(b)$ and hence $x b=0$. Similarly, $y a=0$, thus $a \in \operatorname{ann}(y)$ and $b \in \operatorname{ann}(x)$. However, $b \in\langle a\rangle$ and $a \in\langle b\rangle$ and hence $\langle a\rangle=\langle b\rangle$. Therefore, $[x]=[y]$. So f is one-to-one. Now we show that f is onto. Let $[a] \in V\left(\Gamma_{E}(R)\right)$. So there exists $b \in D$ such that $a=b+I$. Let $I=P_{1}^{\alpha_{1}} \cdots P_{k}^{\alpha_{k}}$ be the decomposition of I into distinct prime (maximal) ideals of D. Then there exist $\left\{\beta_{1}, \ldots, \beta_{k}\right\} \subseteq \mathbb{N} \cup\{0\}$ and an ideal J of D such that $\langle b\rangle=P_{1}^{\beta_{1}} \cdots P_{k}^{\beta_{k}} J$. For every $i(1 \leq i \leq k)$, let $T_{i}=P_{i}^{2} \cup P_{1} \cup \cdots \cup P_{i-1} \cup P_{i+1} \cup \cdots \cup P_{k}$. If $P_{i} \subset T_{i}$, by the prime avoidance theorem, we have $P_{i}=P_{i}^{2}$ and hence $P_{i} R_{P_{i}}=\left(P_{i} R_{P_{i}}\right)^{2}$. By Nakayama's Lemma $P_{i} R_{P_{i}}=0$, hence $P_{i}=0$, which is a contradiction. So $P_{i} \nsubseteq T_{i}$. Let $p_{i} \in P_{i}-T_{i}$ and $s=p_{1}^{\gamma_{1}} \cdots p_{k}^{\gamma_{k}}$, where

$$
\gamma_{i}= \begin{cases}\alpha_{i}-\beta_{i} & \text { if } \beta_{i}<\alpha_{i} \\ 0 & \text { if } \beta_{i} \geq \alpha_{i}\end{cases}
$$

Let $x=s+I$. Now we have $\operatorname{ann}(x)=\operatorname{ann}(s+I)=P_{1}^{\alpha_{1}-\gamma_{1}} \cdots P_{k}^{\alpha_{k}-\gamma_{k}}+I$. Let $t=p_{1}^{\alpha_{1}-\gamma_{1}} \cdots p_{k}^{\alpha_{k}-\gamma_{k}}+I$. Then $\operatorname{ann}(x)=\langle t\rangle$ and since $\operatorname{ann}(a)=a n n(t)=$ $P_{1}^{\gamma_{1}} \cdots P_{k}^{\gamma_{k}}+I$, we have $[t]=[a]$. So $f([x])=[a]$ and hence f is onto. Finally, $[x]$ and $[y]$ are adjacent in $A_{E}(R)$ if and only if $\operatorname{ann}(x) \operatorname{ann}(y)=0$ if and only if $\langle a\rangle\langle b\rangle=0$ if and only if $a b=0$ if and only if $[a]$ and $[b]$ are adjacent in $\Gamma_{E}(R)$.

The following example illustrate Proposition 2.8.
Example 2.9. Let $R=M=\mathbb{Z}_{24}$. Furthermore,

$$
T\left(\mathbb{Z}_{24}\right)^{*}=\{\overline{2}, \overline{3}, \overline{4}, \overline{6}, \overline{8}, \overline{9}, \overline{10}, \overline{12}, \overline{14}, \overline{15}, \overline{16}, \overline{18}, \overline{20}, \overline{21}, \overline{22}\} .
$$

Now $V\left(\Gamma_{E}\left(\mathbb{Z}_{24}\right)\right)=V\left(A_{E}\left(\mathbb{Z}_{24}\right)\right)=\{[2],[3],[4],[6],[\overline{8}],[12]\}$. Also, ann $(\overline{2})=$ $\langle\overline{12}\rangle, \operatorname{ann}(\overline{3})=\langle\overline{8}\rangle, \operatorname{ann}(\overline{4})=\langle\overline{6}\rangle, \operatorname{ann}(\overline{6})=\langle\overline{4}\rangle, \operatorname{ann}(\overline{8})=\langle\overline{3}\rangle$ and $\operatorname{ann}(\overline{12})=$ $\langle\overline{2}\rangle$. Therefore by Proposition 2.8, $\Gamma_{E}\left(\mathbb{Z}_{24}\right) \cong A_{E}\left(\mathbb{Z}_{24}\right)$.

$\Gamma_{E}\left(\mathbb{Z}_{24}\right)$

$$
A_{E}\left(\mathbb{Z}_{24}\right)
$$

3. Relationship between graph-theoretic properties and associated prime ideals of a module over a Dedekind domain

Let M be a torsion finitely generated module over a Dedekind domain R. In this section, we prove that, if $\left|V\left(A_{E}(M)\right)\right| \geq 5$, then a vertex of $A_{E}(M)$ has degree two if and only if it is an associated prime of M.

Theorem 3.1. Let M be a torsion finitely generated module over a Dedekind domain R. Suppose that ann $(M)=P_{1}^{\alpha_{1}} \cdots P_{k}^{\alpha_{k}}$ is the decomposition of ann (M) into the distinct prime ideals of R. Then $\left|\Omega_{R}(M)\right|=\left(\prod_{i=1}^{k}\left(\alpha_{i}+1\right)\right)-1$ and $|A s s(M)|=k$.

Proof. Since R is a Dedekind domain and M is a torsion finitely generated R-module, by [7, Theorem 10.15], there exist cyclic submodules of $M,\left\langle x_{i}\right\rangle$, $1 \leq i \leq n$, such that $M \cong \bigoplus_{i=1}^{n}\left\langle x_{i}\right\rangle$. If $x=x_{1}+\cdots+x_{n}$, then $\operatorname{ann}(x)=$ $\operatorname{ann}(M)$. For every $i, 1 \leq i \leq k$, let $T_{i}=P_{i}^{2} \cup P_{1} \cup \cdots \cup P_{i-1} \cup P_{i+1} \cup$ $\cdots \cup P_{k}$. As in the proof of Proposition 2.8, we have $P_{i} \nsubseteq T_{i}, 1 \leq i \leq$ k. Then there exist $r_{i} \in P_{i}-T_{i}, 1 \leq i \leq k$ such that $P_{i} R_{P_{i}}=\left(\frac{r_{i}}{1}\right)$. Let $r=r_{1}^{\beta_{1}} \cdots r_{k}^{\beta_{k}} x$, where $0 \leq \beta_{i} \leq \alpha_{i}$. We have $\operatorname{ann}(r x)=\{s \in R \mid s r \in$ $\operatorname{ann}(x)\}$ and so $P_{1}^{\gamma_{1}} \cdots P_{k}^{\gamma_{k}} \subseteq \operatorname{ann}(r x)$, where $\gamma_{i}=\alpha_{i}-\beta_{i}(1 \leq i \leq k)$. If for some $i(1 \leq i \leq k), P_{1}^{\gamma_{1}} \cdots P_{i-1}^{\gamma_{i-1}} P_{i}^{\gamma_{i}-1} P_{i+1}^{\gamma_{i+1}} \cdots P_{k}^{\gamma_{k}} \subseteq a n n(r x)$, we have $t=r_{1}^{\alpha_{1}} \ldots r_{i-1}^{\alpha_{i-1}} r_{i}^{\alpha_{i}-1} r_{i+1}^{\alpha_{i+1}} \cdots r_{k}^{\alpha_{k}} \in \operatorname{ann}(x)$. So $\frac{t}{1} \in P_{i}^{\alpha_{i}} R_{P_{i}}=\left(\frac{r_{i}^{\alpha_{i}}}{1}\right)$. We have $\frac{r_{1}^{\alpha_{1} \ldots r_{i-1}^{\alpha_{i-1}} r_{i+1}^{\alpha_{i+1} \ldots r_{k}^{\alpha_{k}}}}}{1} \in\left(\frac{r_{i}}{1}\right)=P_{i} R_{P_{i}}$ and hence there exists $s \in R-P_{i}$ such that $s r_{1}^{\alpha_{1}} \cdots r_{i-1}^{\alpha_{i-1}} r_{i+1}^{\alpha_{i+1}} \cdots r_{k}^{\alpha_{k}} \in P_{i}$, which is a contradiction. So $\operatorname{ann}(r x)=$ $P_{1}^{\gamma_{1}} \cdots P_{k}^{\gamma_{k}}$ and thus $T=\left\{P_{1}^{\gamma_{1}} \cdots P_{k}^{\gamma_{k}} \neq R \mid 0 \leq \gamma_{i} \leq \alpha_{i}\right\} \subseteq \Omega_{R}(M)$. Clearly $\Omega_{R}(M) \subseteq T$ and so $\left|\Omega_{R}(M)\right|=\left(\prod_{i=1}^{k}\left(\alpha_{i}+1\right)\right)-1$ and $|A s s(M)|=k$.

Since R is a Dedekind domain, $S=\frac{R}{\operatorname{ann}(M)}$ is an Artinian principal ideal ring. So $\Omega_{R}(M)=\Omega_{R}(S)$ and $A_{E}(M)=A_{E}(S)$, where S is an R-module. Also, $\Omega(S)$ is the set of all non-trivial ideals of S and hence $A_{E}(S)=\mathbb{A} \mathbb{G}(S)$.

Let M be a torsion finitely generated module over a Dedekind domain R. Suppose that $\operatorname{ann}(M)=P_{1}^{\alpha_{1}} \cdots P_{k}^{\alpha_{k}}$ is the decomposition of ann (M) into prime ideals of R. In this section we find $P_{i}(1 \leq i \leq k), k$ and $\alpha_{i}(1 \leq i \leq k)$, by the graph $A_{E}(M)$. Recall that there exists a natural bijective map from $\Omega_{R}(M)$ to the set of vertices of $A_{E}(M)$ given by $I \longrightarrow[x]$, where $I=\operatorname{ann}(x)$. By Theorem 3.1, we have $|\operatorname{Ass}(M)|=k,\left|V\left(A_{E}(M)\right)\right|=\left(\prod_{i=1}^{k}\left(\alpha_{i}+1\right)\right)-1$ and $V\left(A_{E}(M)\right)=\left\{P_{1}^{\beta_{1}} \cdots P_{k}^{\beta_{k}} \neq R \mid 0 \leq \beta_{i} \leq \alpha_{i}\right\}$.

Lemma 3.2. Let M be a torsion finitely generated module over a Dedekind domain R. Suppose that ann $(M)=P_{1}^{\alpha_{1}} \cdots P_{k}^{\alpha_{k}}$ is the decomposition of ann (M) into the prime ideals of R. Then $V\left(A_{E}(M)\right)=\left\{P_{1}^{\beta_{1}} \cdots P_{k}^{\beta_{k}} \neq R \mid 0 \leq \beta_{i} \leq \alpha_{i}\right\}$ and

$$
\operatorname{deg}\left(P_{1}^{\beta_{1}} \cdots P_{k}^{\beta_{k}}\right)= \begin{cases}\left(\prod_{i=1}^{k}\left(\beta_{i}+1\right)\right)-2 & \text { if } \beta_{i}=\alpha_{i}, \forall i \\ \left(\prod_{i=1}^{k}\left(\beta_{i}+1\right)\right)-1 & \text { if } \beta_{i} \geq \frac{\alpha_{i}}{2}, \forall i \\ \prod_{i=1}^{k}\left(\beta_{i}+1\right) & \text { if } \exists i, \beta_{i}<\frac{\alpha_{i}}{2}\end{cases}
$$

Proof. By Definition, two distinct vertices $P_{1}^{\beta_{1}} \cdots P_{k}^{\beta_{k}}$ and $P_{1}^{\gamma_{1}} \cdots P_{k}^{\gamma_{k}}$ are adjacent if and only if $\beta_{i}+\gamma_{i} \geq \alpha_{i}(1 \leq i \leq k)$. Hence the neighbourhood of $P_{1}^{\beta_{1}} \cdots P_{k}^{\beta_{k}} \in V\left(A_{E}(M)\right)$, is the set $\bar{A}=\left\{P_{1}^{\gamma_{1}} \cdots P_{k}^{\gamma_{k}} \neq R \mid \alpha_{i}-\beta_{i} \leq \gamma_{i} \leq\right.$ $\left.\alpha_{i}, \forall i, 1 \leq i \leq k\right\}$.

Now we consider the following three cases:
(i) Let for every $i(1 \leq i \leq k), \beta_{i}=\alpha_{i}$. Since $A_{E}(M)$ does not have any loop, $A=\left\{P_{1}^{\gamma_{1}} \cdots P_{k}^{\gamma_{k}} \mid 0 \leq \gamma_{i} \leq \alpha_{i}\right\}-\left\{P_{1}^{\alpha_{1}} \cdots P_{k}^{\alpha_{k}}, P_{1}^{0} \cdots P_{k}^{0}\right\}$. So $\operatorname{deg}\left(P_{1}^{\alpha_{1}} \cdots P_{k}^{\alpha_{k}}\right)=\left(\prod_{i=1}^{k}\left(\alpha_{i}+1\right)\right)-2$.
(ii) Let there exist $i(1 \leq i \leq k)$ such that $\beta_{i} \neq \alpha_{i}$ and for every $i(1 \leq i \leq k)$, $\beta_{i} \geq \frac{\alpha_{i}}{2}$. So $\alpha_{i} \leq 2 \beta_{i}$ and hence $P_{1}^{\beta_{1}} \cdots P_{k}^{\beta_{k}} \in A$. Since $A_{E}(M)$ does not have any loop, $A=\left\{P_{1}^{\gamma_{1}} \cdots P_{k}^{\gamma_{k}} \mid \alpha_{i}-\beta_{i} \leq \gamma_{i} \leq \alpha_{i}\right\}-\left\{P_{1}^{\beta_{1}} \cdots P_{k}^{\beta_{k}}\right\}$. So $\operatorname{deg}\left(P_{1}^{\beta_{1}} \cdots P_{k}^{\beta_{k}}\right)=\left(\prod_{i=1}^{k}\left(\beta_{i}+1\right)\right)-1$.
(iii) Let there exist $i(1 \leq i \leq k)$ such that $\beta_{i}<\frac{\alpha_{i}}{2}$. So $A=\left\{P_{1}^{\gamma_{1}} \cdots P_{k}^{\gamma_{k}} \mid \alpha_{i}-\right.$ $\left.\beta_{i} \leq \gamma_{i} \leq \alpha_{i}\right\}$, and hence $\operatorname{deg}\left(P_{1}^{\beta_{1}} \cdots P_{k}^{\beta_{k}}\right)=\prod_{i=1}^{k}\left(\beta_{i}+1\right)$.

Theorem 3.3. Let M be a torsion finitely generated module over a Dedekind domain R. If $\left|V\left(A_{E}(M)\right)\right| \geq 5$, then a vertex of $A_{E}(M)$ has degree two if and only if it is an associated prime of M.

Proof. As in Lemma 3.2, we have $\operatorname{ann}(M)=P_{1}^{\alpha_{1}} \cdots P_{k}^{\alpha_{k}}$. In the proof of Lemma 3.2, we showed that $V\left(A_{E}(M)\right)=\left\{P_{1}^{\beta_{1}} \cdots P_{k}^{\beta_{k}} \neq R \mid 0 \leq \beta_{i} \leq \alpha_{i}\right\}$
and

$$
\operatorname{deg}\left(P_{1}^{\beta_{1}} \cdots P_{k}^{\beta_{k}}\right)= \begin{cases}\left(\prod_{i=1}^{k}\left(\beta_{i}+1\right)\right)-2 & \text { if } \beta_{i}=\alpha_{i}, \forall i \\ \left(\prod_{i=1}^{k}\left(\beta_{i}+1\right)\right)-1 & \text { if } \beta_{i} \geq \frac{\alpha_{i}}{2}, \forall i \\ \prod_{i=1}^{k}\left(\beta_{i}+1\right) & \text { if } \exists i, \beta_{i}<\frac{\alpha_{i}}{2}\end{cases}
$$

By Theorem 3.1, we have $\operatorname{Ass}(M)=\left\{P_{1}, \ldots, P_{k}\right\}$ and by Lemma 3.2, $\operatorname{deg} P_{i}=$ $1+1=2$. Conversely, let $\operatorname{deg}\left(P_{1}^{\beta_{1}} \cdots P_{k}^{\beta_{k}}\right)=2$. If $\left(\prod_{i=1}^{k}\left(\beta_{i}+1\right)\right)-2=2$, then $\left(\prod_{i=1}^{k}\left(\beta_{i}+1\right)\right)=4$. We have the following two cases:
(i) $\alpha_{1}=3$ and for every $i \neq 1, \alpha_{i}=0$.
(ii) $\alpha_{1}=\alpha_{2}=1$ and for every $i \neq 1,2, \alpha_{i}=0$.

In both above cases, $\left|V\left(A_{E}(M)\right)\right| \leq 4$, which is a contradiction.
If $\left(\prod_{i=1}^{k}\left(\beta_{i}+1\right)\right)-1=2$, then $\left(\prod_{i=1}^{k}\left(\beta_{i}+1\right)\right)=3$. So $\beta_{1}=2$ and for every $i \neq 1, \beta_{i}=0$. Hence $\alpha_{1} \leq 4$ and for every $i \neq 1, \alpha_{i}=0$. Therefore $\left|V\left(A_{E}(M)\right)\right| \leq 4$, which is a contradiction. Now let $\prod_{i=1}^{k}\left(\beta_{i}+1\right)=2$. So there exists $i(1 \leq i \leq k)$ such that $\beta_{i}+1=2$ and for every $j \neq i(1 \leq j \leq k)$, $\beta_{j}+1=1$. So $\beta_{i}=1$ and for every $j \neq i(1 \leq j \leq k), \beta_{j}=0$. Therefore, $P_{1}^{\beta_{1}} \cdots P_{k}^{\beta_{k}}=P_{i} \in \operatorname{Ass}(M)$.

If $\mid V\left(A_{E}(M) \mid=1,2,3\right.$ or 4 , then Theorem 3.3 is not necessary true. For example for \mathbb{Z}-modules $\mathbb{Z}_{2}, \mathbb{Z}_{4}, \mathbb{Z}_{8}$ and \mathbb{Z}_{16} we have $A_{E}\left(\mathbb{Z}_{2}\right) \cong K_{1}, A_{E}\left(\mathbb{Z}_{4}\right) \cong$ $K_{2}, A_{E}\left(\mathbb{Z}_{8}\right) \cong K_{3}$ and $A_{E}\left(\mathbb{Z}_{16}\right) \cong \Theta_{2,2,1}$, where $\Theta_{2,2,1}$ is the graph K_{4} with one edge deleted. But $\operatorname{Ass}\left(\mathbb{Z}_{2}\right)=\operatorname{Ass}\left(\mathbb{Z}_{4}\right)=\operatorname{Ass}\left(\mathbb{Z}_{8}\right)=\operatorname{Ass}\left(\mathbb{Z}_{16}\right)=\{2 \mathbb{Z}\}$.

The following examples illustrate Theorem 3.3, when R is a PID and R is a Dedekind domain but it is not a $P I D$, respectively.

$A_{E}\left(\mathbb{Z}_{24}\right)$

Example 3.4. Let $R=\mathbb{Z}$ and $M=\mathbb{Z}_{24}$. We have

$$
V\left(A_{E}\left(\mathbb{Z}_{24}\right)\right)=\{[\overline{1}],[\overline{2}],[\overline{3}],[\overline{4}],[\overline{6}],[\overline{8}],[\overline{12}]\} .
$$

Then $\operatorname{Ass}\left(\mathbb{Z}_{24}\right)=\{\operatorname{ann}(\overline{12})=2 \mathbb{Z}, \operatorname{ann}(\overline{8})=3 \mathbb{Z}\}$.
Example 3.5. Let $R=\mathbb{Z}[\sqrt{10}], I=\langle 10,10 \sqrt{10}\rangle$ and $M=\frac{R}{I}$. We know that R is a Dedekind domain, but it is not a PID. We have $\operatorname{ann}(5 \sqrt{10}+I)=\langle 2, \sqrt{10}\rangle$, $\operatorname{ann}(2 \sqrt{10}+I)=\langle 5, \sqrt{10}\rangle, \operatorname{ann}(5+I)=\langle 2,2 \sqrt{10}\rangle, \operatorname{ann}(2+I)=\langle 5,5 \sqrt{10}\rangle$, $\operatorname{ann}(\sqrt{10}+I)=\langle 10, \sqrt{10}\rangle, \operatorname{ann}(2+5 \sqrt{10}+I)=\langle 10,5 \sqrt{10}\rangle, \operatorname{ann}(5+2 \sqrt{10}+I)=$ $\langle 10,2 \sqrt{10}\rangle$ and $\operatorname{ann}(1+I)=\langle 10,10 \sqrt{10}\rangle$.

Put $v_{1}=[5 \sqrt{10}+I], v_{2}=[2 \sqrt{10}+I], v_{3}=[5+I], v_{4}=[2+I], v_{5}=[\sqrt{10}+I]$, $v_{6}=[2+5 \sqrt{10}+I], v_{7}=[5+2 \sqrt{10}+I]$ and $v_{8}=[1+I]$.

Then $\operatorname{Ass}(M)=\left\{P_{1}=\langle 2, \sqrt{10}\rangle, P_{2}=\langle 5, \sqrt{10}\rangle\right\}$.
Corollary 3.6. Let R be a Dedekind domain and $0 \neq I$ be an ideal of R and $S=\frac{R}{I}$. If $\left|V\left(A_{E}(S)\right)\right| \geq 4$, then a vertex of $A_{E}(S)$ has degree one if and only if it is an associated prime ideal of S.
Proof. The proof follows from Theorem 3.3 and the observation after Theorem 3.3.

In Example 2.9, $A_{E}\left(\mathbb{Z}_{24}\right)$ is an example for Corollary 3.6.
Corollary 3.7. Let R be a Dedekind domain and M be a torsion finitely generated R-module. If $A_{E}(M)=C_{n}$, then $n=3$.

Proof. By the proof of Theorem 3.1, there exists $x \in T(M)^{*}$ such that $\operatorname{ann}(M)=$ $\operatorname{ann}(x)$ and hence $[x]$ is adjacent to any vertex. $\operatorname{So} \operatorname{deg}([x])=n-1$. Since the degree of any vertex in C_{n} is two, hence $n-1=2$ and we have $n=3$.

Proposition 3.8. Let R be a Dedekind domain and M be a torsion finitely generated R-module. If $A_{E}(M)=K_{n}$, then $1 \leq n \leq 3$.

Proof. Since $A_{E}(M)$ is complete, by part (iv) of Proposition 2.5, we have $|\operatorname{Ass}(M)| \leq 2$. Suppose that $\operatorname{Ass}(M)=\{P, Q\}$. Since $A_{E}(M)$ is complete, $P Q \subseteq \operatorname{ann}(M)$. But $\operatorname{ann}(M) \subseteq P$ and $\operatorname{ann}(M) \subseteq Q$, hence $\operatorname{ann}(M) \subseteq P Q$ and thus $\operatorname{ann}(M)=P Q$. So by Theorem 3.1, $V\left(A_{E}(M)\right)=\{P, Q, P Q\}$ and hence $A_{E}(M)=K_{3}$. Now suppose that $|\operatorname{Ass}(M)|=1$ and $\operatorname{Ass}(M)=\{P\}$. By Theorem 3.1, $\operatorname{ann}(M)=P^{\alpha}$ for some $\alpha \in \mathbb{N}$. Thus $V\left(A_{E}(M)\right)=\left\{P, \ldots, P^{\alpha}\right\}$. If $\alpha \geq 4$, then P and P^{2} are not adjacent, which is a contradiction. Therefore, $1 \leq \alpha \leq 3$ and we have $1 \leq n \leq 3$.

Theorem 3.9. Let M_{1} and M_{2} be torsion finitely generated modules over a Dedekind domain R such that $A_{E}\left(M_{1}\right) \cong A_{E}\left(M_{2}\right)$ and $\left|V\left(A_{E}\left(M_{1}\right)\right)\right|=$ $\left|V\left(A_{E}\left(M_{2}\right)\right)\right| \geq 5$. If $\operatorname{ann}\left(M_{1}\right)=P_{1}^{\alpha_{1}} \cdots P_{k}^{\alpha_{k}}$ and $\operatorname{ann}\left(M_{2}\right)=Q_{1}^{\beta_{1}} \cdots Q_{s}^{\beta_{s}}$ are the decompositions of $\operatorname{ann}\left(M_{i}\right), i=1,2$, into prime ideals of R such that $\alpha_{1} \geq \cdots \geq \alpha_{k}$ and $\beta_{1} \geq \cdots \geq \beta_{s}$, then $k=s$ and $\left|\operatorname{Ass}\left(M_{1}\right)\right|=\left|\operatorname{Ass}\left(M_{2}\right)\right|=k$. Furthermore, for every $i, 1 \leq i \leq k, \alpha_{i}=\beta_{i}$.

Proof. By Theorem 3.1, $k=\left|\operatorname{Ass}\left(M_{1}\right)\right|=\left|\operatorname{Ass}\left(M_{2}\right)\right|=s$. If $\alpha_{1}=1$, then it is clear that $\alpha_{i}=\beta_{i}=1(1 \leq i \leq k)$. So let $\alpha_{1}>1$. By Lemma 3.2, $\operatorname{deg}\left(P_{1}^{\alpha_{1}-1} P_{2}^{\alpha_{2}} \cdots P_{k}^{\alpha_{k}}\right)=\alpha_{1}\left(\alpha_{2}+1\right) \cdots\left(\alpha_{k}+1\right)-1$ is the second maximum degree of $A_{E}\left(M_{1}\right)$. Then $\alpha_{1}\left(\alpha_{2}+1\right) \cdots\left(\alpha_{k}+1\right)-1=\operatorname{deg}\left(P_{1}^{\alpha_{1}-1} P_{2}^{\alpha_{2}} \cdots P_{k}^{\alpha_{k}}\right)=$ $\operatorname{deg}\left(Q_{1}^{\beta_{1}-1} Q_{2}^{\beta_{2}} \cdots Q_{k}^{\beta_{k}}\right)=\beta_{1}\left(\beta_{2}+1\right) \cdots\left(\beta_{k}+1\right)-1$ and we have $\prod_{i=1}^{k}\left(\alpha_{i}+\right.$ $1)=\prod_{i=1}^{k}\left(\beta_{i}+1\right)$. Thus $\alpha_{1}=\beta_{1}$. Now for every $0 \leq s \leq \alpha_{1}$, we have $\operatorname{deg}\left(P_{1}^{\alpha_{1}-s} P_{2}^{\alpha_{2}} \cdots P_{k}^{\alpha_{k}}\right)=\operatorname{deg}\left(Q_{1}^{\alpha_{1}-s} Q_{2}^{\beta_{2}} \cdots Q_{k}^{\beta_{k}}\right)$ and there exists s such that

$$
\begin{aligned}
\operatorname{deg}\left(P_{1}^{\alpha_{1}-s-1} P_{2}^{\alpha_{2}} \cdots P_{k}^{\alpha_{k}}\right) & <\operatorname{deg}\left(P_{1}^{\alpha_{1}} P_{2}^{\alpha_{2}-1} P_{3}^{\alpha_{3}} \cdots P_{k}^{\alpha_{k}}\right) \\
& \leq \operatorname{deg}\left(P_{1}^{\alpha_{1}-s} P_{2}^{\alpha_{2}} \cdots P_{k}^{\alpha_{k}}\right)
\end{aligned}
$$

Therefore, $\operatorname{deg}\left(P_{1}^{\alpha_{1}} P_{2}^{\alpha_{2}-1} P_{3}^{\alpha_{3}} \cdots p_{k}^{\alpha_{k}}\right)=\operatorname{deg}\left(Q_{1}^{\alpha_{1}} Q_{2}^{\beta_{2}-1} Q_{3}^{\beta_{3}} \cdots Q_{k}^{\beta_{k}}\right)$. So $\alpha_{2}=$ β_{2}. Let $\alpha_{i}=\beta_{i}$, for every $i, 1 \leq i \leq t-1$. Then there exist $s_{i}, 0 \leq$ $s_{i} \leq \alpha_{i}(1 \leq i \leq t-1)$, such that $\operatorname{deg}\left(P_{1}^{\alpha_{1}} \cdots P_{t-1}^{\alpha_{t-1}} P_{t}^{\alpha_{t}-1} P_{t+1}^{\alpha_{t+1}} \cdots P_{k}^{\alpha_{k}}\right) \leq$ $\operatorname{deg}\left(P_{1}^{\alpha_{1}-s_{1}} \cdots P_{t-1}^{\alpha_{t-1}-s_{t-1}} P_{t}^{\alpha_{t}} \cdots P_{k}^{\alpha_{k}}\right)$. Also for every $i(1 \leq i \leq t-1)$, we have

$$
\begin{aligned}
& \operatorname{deg}\left(P_{1}^{\alpha_{1}-s_{1}} \cdots P_{i-1}^{\alpha_{i-1}-s_{i-1}} P_{i}^{\alpha_{i}-s_{i}-1} P_{i+1}^{\alpha_{i+1}-s_{i+1}} \cdots P_{t-1}^{\alpha_{t-1}-s_{t-1}} P_{t}^{\alpha_{t}} \cdots P_{k}^{\alpha_{k}}\right) \\
< & \operatorname{deg}\left(P_{1}^{\alpha_{1}} \cdots P_{t-1}^{\alpha_{t-1}} P_{t}^{\alpha_{t}-1} P_{t+1}^{\alpha_{t+1}} \cdots P_{k}^{\alpha_{k}}\right) .
\end{aligned}
$$

Hence
$\operatorname{deg}\left(P_{1}^{\alpha_{1}} \cdots P_{t-1}^{\alpha_{t-1}} P_{t}^{\alpha_{t}-1} P_{t+1}^{\alpha_{t+1}} \cdots P_{k}^{\alpha_{k}}\right)=\operatorname{deg}\left(Q_{1}^{\alpha_{1}} \cdots Q_{t-1}^{\alpha_{t-1}} Q_{t}^{\beta_{t}-1} Q_{t+1}^{\beta_{t+1}} \cdots Q_{k}^{\beta_{k}}\right)$
and it follows that $\alpha_{t}=\beta_{t}$. Therefore for every $i(1 \leq i \leq k), \alpha_{i}=\beta_{i}$.
Note that Theorem 3.9 is true, when $\left|V\left(A_{E}\left(M_{1}\right)\right)\right|=\left|V\left(A_{E}\left(M_{2}\right)\right)\right|=1,2$ or 4. Also Theorem 3.9 is not necessarily true, when $\left|V\left(A_{E}\left(M_{1}\right)\right)\right|=\left|V\left(A_{E}\left(M_{2}\right)\right)\right|$ $=3$. For example for \mathbb{Z}-modules \mathbb{Z}_{6} and \mathbb{Z}_{8}, we have $A_{E}\left(\mathbb{Z}_{6}\right) \cong A_{E}\left(\mathbb{Z}_{8}\right) \cong K_{3}$. But $\operatorname{Ass}\left(\mathbb{Z}_{6}\right)=\{2 \mathbb{Z}, 3 \mathbb{Z}\}, \operatorname{Ass}\left(\mathbb{Z}_{8}\right)=\{2 \mathbb{Z}\}, \operatorname{ann}\left(\mathbb{Z}_{8}\right)=(2 \mathbb{Z})^{3}$ and $\operatorname{ann}\left(\mathbb{Z}_{6}\right)=$ $(2 \mathbb{Z})(3 \mathbb{Z})$.

Let $n \in \mathbb{N}$ and p be a prime number. Then by Theorem 3.1, we have $\left|\Omega_{\mathbb{Z}}\left(\mathbb{Z}_{p^{n}}\right)\right|=\left|V\left(A_{E}\left(\mathbb{Z}_{p^{n}}\right)\right)\right|=n$. Now for every $n \in \mathbb{N}$, we shall obtain the number of graphs Γ (up to isomorphism) such that there exist a Dedekind domain R and a torsion finitely generated R-module M with $\left|V\left(A_{E}(M)\right)\right|=n$ and $A_{E}(M) \cong \Gamma$. Let $k \in \mathbb{N}$ and $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\} \subseteq \mathbb{N}$ be such that $n+1=$ $\prod_{i=1}^{k}\left(\alpha_{i}+1\right)$. Also, $m=p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}$, where $p_{i}(1 \leq i \leq k)$ are prime numbers and for $i \neq j(1 \leq i, j \leq k), p_{i} \neq p_{j}$. Then for \mathbb{Z}-module \mathbb{Z}_{m}, we have $\operatorname{ann}\left(\mathbb{Z}_{m}\right)=\left(p_{1} \mathbb{Z}\right)^{\alpha_{1}} \cdots\left(p_{k} \mathbb{Z}\right)^{\alpha_{k}}$ and $\left|V\left(A_{E}\left(\mathbb{Z}_{m}\right)\right)\right|=\left(\prod_{i=1}^{k}\left(\alpha_{i}+1\right)\right)-1=$ n. Conversely, let the graph Γ be such that $|V(\Gamma)|=n$ and suppose that there exist a Dedekind domain R and a torsion finitely generated R-module M such that $A_{E}(M) \cong \Gamma$. Let $\operatorname{ann}(M)=P_{1}^{\alpha_{1}} \cdots P_{k}^{\alpha_{k}}$ be the decomposition of $\operatorname{ann}(M)$ to prime ideals of R. Let $m=p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}$, where $p_{i}(1 \leq i \leq k)$ are prime numbers and for $i \neq j(1 \leq i, j \leq k), p_{i} \neq p_{j}$. So for \mathbb{Z}-module \mathbb{Z}_{m}, we have $A_{E}(M) \cong A_{E}\left(\mathbb{Z}_{m}\right)$. Then the number of graphs Γ such that there exist a Dedekind domain R and a torsion finitely generated R-module M with $A_{E}(M) \cong \Gamma$ and $\left|V\left(A_{E}(M)\right)\right|=n$, is equal the number of products $n+1=\prod_{i=1}^{k} a_{i}$, where $k \in \mathbb{N}$ and $a_{i} \geq 2(1 \leq i \leq k)$.

Example 3.10. Since $7+1=8$ and $8=8,8=4 \times 2,8=2 \times 2 \times 2$, there exist three graphs Γ such that there exist a Dedekind domain R and a torsion finitely generated R-module M with $A_{E}(M) \cong \Gamma$ and $\left|V\left(A_{E}(M)\right)\right|=7$. For example, $\mathbb{Z}_{128}, \mathbb{Z}_{30}, \mathbb{Z}_{24}$.

The number 3 is an exception, because $3+1=4$ and $4=4,4=2 \times 2$. Hence we must have two graphs such that there exist a Dedekind domain R and a torsion finitely generated R-module M with $\left|V\left(A_{E}(M)\right)\right|=3$, and $A_{E}(M) \cong \Gamma$. But $A_{E}\left(\mathbb{Z}_{p^{3}}\right) \cong A_{E}\left(\mathbb{Z}_{p q}\right) \cong K_{3}$, where p, q are prime numbers.

Then for every torsion finitely generated module M over a Dedekind domain R, there exists $m \in \mathbb{N}$ such that $A_{E}(M) \cong A_{E}\left(\mathbb{Z}_{m}\right)$. Now let $\operatorname{ann}(M)=$ $P_{1}^{\alpha_{1}} \cdots P_{k}^{\alpha_{k}}$ be the decomposition of $\operatorname{ann}(M)$ into prime ideals of R and $m=$ $p_{1}^{\beta_{1}} \cdots p_{s}^{\beta_{s}}$ be the decomposition of m into prime numbers of \mathbb{Z} such that $\alpha_{1} \geq$ $\cdots \geq \alpha_{k}$ and $\beta_{1} \geq \cdots \geq \beta_{s}$. By Theorem 3.9, we have $k=s$ and for every $i(1 \leq i \leq k), \alpha_{i}=\beta_{i}$.

Theorem 3.11. Let M be a finitely generated module over a Dedekind domain R with ann $(M) \notin \operatorname{Spec}(R)$. Suppose that ann $(M)=P_{1}^{\alpha_{1}} \cdots P_{k}^{\alpha_{k}} Q_{1}^{\beta_{1}} \cdots Q_{t}^{\beta_{t}}$ is the decomposition of ann (M) into prime ideals of R such that for every $i(1 \leq i \leq k), \alpha_{i}$ is even and for every $j(1 \leq j \leq t), \beta_{j}$ is odd. Then $\nu\left(A_{E}(M)\right)=\left(\prod_{i=1}^{k}\left(\frac{\alpha_{i}}{2}+1\right) \prod_{j=1}^{t}\left(\frac{\beta_{j}+1}{2}\right)\right)+t$.

Proof. Let $\operatorname{ann}(M)=T_{1}^{\gamma_{1}} \cdots T_{s}^{\gamma_{s}}$, where $\left\{T_{1}, \ldots, T_{s}\right\}=\left\{P_{1}, \ldots, P_{k}, Q_{1}, \ldots, Q_{t}\right\}$ and $\left\{\gamma_{1}, \ldots, \gamma_{s}\right\}=\left\{\alpha_{1}, \ldots, \alpha_{k}, \beta_{1}, \ldots, \beta_{t}\right\}$. We define the function $f: \mathbb{N} \longrightarrow \mathbb{N}$ by

$$
f(\gamma)= \begin{cases}\frac{\gamma}{2}+1 & \text { if } \gamma \text { is even } \\ \frac{\gamma+1}{2} & \text { if } \gamma \text { is odd }\end{cases}
$$

Now we consider $\left\{\left(i_{1}, \ldots, i_{s}\right) \mid 0 \leq i_{j} \leq \gamma_{j}\right.$ and $\left.1 \leq j \leq s\right\}$ with the following ordering:

$$
\begin{aligned}
(0, \ldots, 0) & <(1,0, \ldots, 0)<\cdots<\left(\gamma_{1}, 0, \ldots, 0\right)<(0,1,0, \ldots,) \\
& <(1,1,0, \ldots, 0)<\left(\gamma_{1}, 1,0, \ldots, 0\right)<(0,2, \ldots, 0) \\
& <(1,2, \ldots, 0)<\cdots<\left(0, \gamma_{2}, 0 \cdots, 0\right)<\left(1, \gamma_{2}, 0, \ldots, 0\right) \\
& <\cdots<\left(0, \ldots, 0, \gamma_{s}\right)<\left(1,0, \ldots, 0, \gamma_{s}\right)<\cdots<\left(\gamma_{1}, \ldots, \gamma_{s}\right) .
\end{aligned}
$$

For every $\left(i_{1}, \ldots, i_{s}\right)$, we consider the subsets $V_{\left(i_{1}, \ldots, i_{s}\right)}$ of $V\left(A_{E}(M)\right)$ that satisfy the following conditions:
(i) $T_{1}^{\gamma_{1}-i_{1}} \cdots T_{s}^{\gamma_{s}-i_{s}} \in V_{\left(i_{1}, \ldots, i_{s}\right)}$;
(ii) for every $\left(l_{1}, \ldots, l_{s}\right)<\left(i_{1}, \ldots, i_{s}\right), V_{\left(i_{1}, \ldots, i_{s}\right)} \cap V_{\left(l_{1}, \ldots, l_{s}\right)}=\emptyset$;
(iii) for every $v \in V\left(A_{E}(M)\right)$ such that $v \notin \bigcup_{\left(l_{1}, \ldots, l_{s}\right)<\left(i_{1}, \ldots, i_{s}\right)} V_{\left(l_{1}, \ldots, l_{s}\right)}$ and v and $T_{1}^{\gamma_{1}-i_{1}} \cdots T_{s}^{\gamma_{s}-i_{s}}$ are not adjacent, then $v \in V_{\left(i_{1}, \ldots, i_{s}\right)}$.

Now we have $V_{\left(i_{1}, 0, \ldots, 0\right)} \neq \emptyset$. If γ_{1} is even, then $0 \leq i_{1} \leq f\left(\gamma_{1}\right)-1$ and if γ_{1} is odd, then $0 \leq i_{1} \leq f\left(\gamma_{1}\right)$. Also, $V_{\left(i_{1}, i_{2}, 0, \ldots, 0\right)} \neq \emptyset$, when $0 \leq i_{1} \leq$ $f\left(\gamma_{1}\right)-1$ and $0 \leq i_{2} \leq f\left(\gamma_{2}\right)-1$. Moreover, if γ_{1} is odd (or γ_{2} is odd), then $V_{\left(\frac{\gamma_{1}+1}{2}, 0, \ldots, 0\right)} \neq \emptyset\left(\right.$ or $\left.V_{\left(0, \frac{\gamma_{2}+1}{2}, 0, \ldots, 0\right)} \neq \emptyset\right)$. Similarly, we have $V_{\left(i_{1}, \ldots, i_{s}\right)} \neq \emptyset$, when $0 \leq i_{j} \leq f\left(\gamma_{j}\right)-1$ and if γ_{j} is odd, we have $V_{\left(0, \ldots, 0, \frac{\gamma_{j}+1}{2}, 0, \ldots, 0\right)} \neq \emptyset$. Let $I=\left\{\gamma_{j} \mid \gamma_{j}\right.$ is odd, $\left.1 \leq j \leq s\right\},|I|=t, A=\left\{V_{\left(i_{1}, \ldots, i_{s}\right)} \mid V_{\left(i_{1}, \ldots, i_{s}\right)} \neq \emptyset\right\}$ and $|A|=a$. Then $a=\prod_{i=1}^{s} f\left(\gamma_{i}\right)+t$. Since $\bigcup_{\left(i_{1}, \ldots, i_{s}\right)} V_{\left(i_{1}, \ldots, i_{s}\right)}=V\left(A_{E}(M)\right)$ and for every $V_{\left(i_{1}, \ldots, i_{s}\right)}, V_{\left(l_{1}, \ldots, l_{s}\right)} \in A, V_{\left(i_{1}, \ldots, i_{s}\right)} \cap V_{\left(l_{1}, \ldots, l_{s}\right)}=\emptyset$ and the vertices of no $V_{\left(i_{1}, \ldots, i_{s}\right)}$ are adjacent, the set A is a colour partition of $A_{E}(M)$. Since $|A|=a$, hence $\nu\left(A_{E}(M)\right) \leq a$. Now let $T_{1}^{\gamma_{1}-i_{1}} \cdots T_{s}^{\gamma_{s}-i_{s}} \in V_{\left(i_{1}, \ldots, i_{s}\right)}$ and $T_{1}^{\gamma_{1}-i_{1}^{\prime}} \ldots T_{s}^{\gamma_{s}-i_{s}^{\prime}} \in V_{\left(i_{1}{ }^{\prime}, \ldots, i_{s}^{\prime}\right)}$. We consider $j, 1 \leq j \leq s$. Now we have the following two cases:
(i) γ_{j} is even. If $0 \leq i_{j} \leq \frac{\gamma_{j}}{2}$ and $0 \leq i_{j}^{\prime} \leq \frac{\gamma_{j}}{2}$, then $i_{j}+i_{j}^{\prime} \leq \gamma_{j}$. So $2 \gamma_{j}-\left(i_{j}+i_{j}^{\prime}\right) \geq \gamma_{j}$.
(ii) γ_{j} is odd. If $0 \leq i_{j} \leq \frac{\gamma_{j}-1}{2}$ and $0 \leq i_{j}^{\prime} \leq \frac{\gamma_{j}-1}{2}$, then $i_{j}+i_{j}^{\prime} \leq \gamma_{j}-1$. So $2 \gamma_{j}-\left(i_{j}+i_{j}^{\prime}\right) \geq \gamma_{j}+1$. But if $i_{j}=\frac{\gamma_{j}+1}{2}$ and $0 \leq i_{j}^{\prime} \leq \frac{\gamma_{j}-1}{2}$, then $i_{j}+i_{j}^{\prime} \leq \gamma_{j}$ and hence $2 \gamma_{j}-\left(i_{j}+i_{j}^{\prime}\right) \geq \gamma_{j}$. Therefore, the induced subgraph generated by $\left\{T_{1}^{\gamma_{1}-i_{1}} \cdots T_{s}^{\gamma_{s}-i_{s}} \mid T_{1}^{\gamma_{1}-i_{1}} \cdots T_{s}^{\gamma_{s}-i_{s}} \in V_{\left(i_{1}, \ldots, i_{s}\right)}\right\}$ is the complete graph K_{a}. So $\nu\left(A_{E}(M)\right) \geq a$ and hence

$$
\nu\left(A_{E}(M)\right)=a=\left(\prod_{i=1}^{s} f\left(\gamma_{i}\right)\right)+t=\left(\prod_{i=1}^{k}\left(\frac{\alpha_{i}}{2}+1\right) \prod_{j=1}^{t}\left(\frac{\beta_{j}+1}{2}\right)\right)+t .
$$

Now suppose $\operatorname{ann}(M) \in \operatorname{Spec}(R)$. Since $\left|V\left(A_{E}(M)\right)\right|=1$, hence $\nu\left(A_{E}(M)\right)$ $=1$. But by Theorem 3.11, we have $\nu\left(A_{E}(M)\right)=\frac{1+1}{2}+1=2$. Therefore, Theorem 3.11 is not necessarily valid in the case $\operatorname{ann}(M) \in \operatorname{Spec}(R)$.

In Example 3.5, we show that $\left|V\left(A_{E}(M)\right)\right|=8$ and $|\operatorname{Ass}(M)|=2$. Then we have $\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right)=8+1=9$, hence $\alpha_{1}=\alpha_{2}=2$. So $\operatorname{ann}(M)=P_{1}^{2} P_{2}^{2}$. In the following example, we obtain $\nu\left(A_{E}(M)\right)$ for Example 3.5.

Example 3.12. Let $R=\mathbb{Z}[\sqrt{10}], I=\langle 10,10 \sqrt{10}\rangle$ and $M=\frac{R}{I}$. Since $\operatorname{ann}(M)=P_{1}^{2} P_{2}^{2}$, we have $\nu\left(A_{E}(M)\right)=\left(\frac{2}{2}+1\right) \times\left(\frac{2}{2}+1\right)=4$.

$$
A_{M}(R)
$$

Corollary 3.13. Let M be a torsion finitely generated module over a Dedekind domain R. Then the clique number and the chromatic number of $A_{E}(M)$ are equal.

Proof. In the notation of Theorem 3.11, we have $\nu\left(A_{E}(M)\right)=a$, where K_{a} is a subgraph of $A_{E}(M)$. So $a \leq \chi\left(A_{E}(M)\right)$. Let $a \neq \chi\left(A_{E}(M)\right)$. Then there exists $b>a$ such that K_{b} is a complete subgraph of $A_{E}(M)$ and hence $\nu\left(A_{E}(M)\right) \geq b>a$, which is a contradiction. So $\nu\left(A_{E}(M)\right)=\chi\left(A_{E}(M)\right)=$ a.

References

[1] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434-447. https://doi.org/10.1006/jabr.1998.7840
[2] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, AddisonWesley Publishing Co., Reading, MA, 1969.
[3] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208-226. https: //doi.org/10.1016/0021-8693(88)90202-5
[4] M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings I, J. Algebra Appl. 10 (2011), no. 4, 727-739. https://doi.org/10.1142/S0219498811004896
[5] M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings II, J. Algebra Appl. 10 (2011), no. 4, 741-753. https://doi.org/10.1142/S0219498811004902
[6] S. Ghalandarzadeh and P. Malakooti Rad, Torsion graph over multiplication modules, Extracta Math. 24 (2009), no. 3, 281-299.
[7] N. Jacobson, Basic Algebra. II, Second Edition, New York, 2009.
[8] S. B. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra 30 (2002), no. 7, 3533-3558. https://doi.org/10.1081/AGB-120004502
[9] S. Spiroff and C. Wickham, A zero divisor graph determined by equivalence classes of zero divisors, Comm. Algebra 39 (2011), no. 7, 2338-2348. https://doi.org/10.1080/ 00927872.2010 .488675

Reza Nekooei
Department of Pure Mathematics
Mahani Mathematical Research Center
Shahid Bahonar University of Kerman
Kerman, Iran
Email address: rnekooei@uk.ac.ir
Zahra Pourshafiey
Department of Pure Mathematics
Mahani Mathematical Research Center
Shahid Bahonar University of Kerman
Kerman, Iran
Email address: zhpoorshafiee@gmail.com

[^0]: Received July 12, 2023; Accepted November 3, 2023.
 2020 Mathematics Subject Classification. 13F05, 16D10, 05C15, 05C69.
 Key words and phrases. Associated prime ideals, Dedekind domain, zero-divisor graph, chromatic number, Clique number.

