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A TORSION GRAPH DETERMINED BY EQUIVALENCE

CLASSES OF TORSION ELEMENTS AND ASSOCIATED

PRIME IDEALS

Reza Nekooei and Zahra Pourshafiey

Abstract. In this paper, we define the torsion graph determined by
equivalence classes of torsion elements and denote it by AE(M). The

vertex set of AE(M) is the set of equivalence classes {[x] | x ∈ T (M)∗},
where two torsion elements x, y ∈ T (M)∗ are equivalent if ann(x) =
ann(y). Also, two distinct classes [x] and [y] are adjacent in AE(M),

provided that ann(x)ann(y)M = 0. We shall prove that for every torsion
finitely generated module M over a Dedekind domain R, a vertex of

AE(M) has degree two if and only if it is an associated prime of M .

1. Introduction

Throughout this paper, all rings are commutative with identity and all mod-
ules are unitary. An element x of an R-module M is called a torsion element if
it has a non-zero annihilator in R. Let T (M) be the set of torsion elements of
M . It is clear that if R is an integral domain, then T (M) is a submodule of M .
We call T (M) the torsion submodule of M . If T (M) = M , then M is called a
torsion module. For every subset X of R (or M), we define X∗ = X−{0}. Re-
call that a prime ideal P is an associated prime of R (or M) if P = ann(x) for
some non-zero element x ∈ R (or x ∈ M). The set of all associated primes of a
ring R (or R-module M) is denoted by Ass(R) (or Ass(M)). It is well known
that for a finitely generated module M over a Noetherian ring R, Ass(R) and
Ass(M) are both finite.

A Dedekind domain is a Noetherian integrally closed domain in which every
non-zero prime ideal is maximal. If R is a Dedekind domain, then for every non-
zero prime ideal P of R, RP is a DV R [2, Theorem 9.3]. Also every non-zero
ideal I of a Dedekind domain R can be uniquely expressed by I = Pn1

1 · · ·Pnr
r ,

where Pi (1 ≤ i ≤ r) are prime ideals of R containing I [2, Corollary 9.4].
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A graph G consists of a set of vertices V (G) and a set of edges E(G) con-
sisting of pairs of vertices. We consider simple graphs, that is, graphs without
loops and parallel edges. Two vertices of a graph are said to be connected
if there is a path between them. A graph G is connected if any two distinct
vertices are connected. The distance d(x, y) between connected vertices x and
y is the length of a shortest path from x to y; if there is no such a path we
write d(x, y) = ∞. The diameter of a connected graph G is the supremum
of the distances between vertices. The diameter is 0 if the graph consists of
a single vertex. For a graph G, the degree deg(v) of a vertex v in G is the
number of edges incident to v. We denote the complete graph with n vertices
and a complete bipartite graph with two parts of sizes m and n, by Kn and
Km,n, respectively. The complete bipartite graph K1,n is called a star graph.
A cycle graph Cn is a path from v1 to vn such that v1 = vn. Two graphs
G and H are isomorphic if there is a bijection f from V (G) onto V (H) such
that two vertices x and y of G are adjacent if and only if the vertices f(x) and
f(y) of H are adjacent. A colour-partition of a graph G is a partition of V (G)
into colour-classes V1, . . . , Vl such that no Vi (1 ≤ i ≤ l), contains a pair of
adjacent vertices. In other words, the induced subgraphs ⟨Vi⟩ have no edges.
The chromatic number of G, denoted by ν(G), is the least natural number l
for which such a partition is possible. A subset X of the vertices of G is called
a clique if the induced subgraph on X is a complete graph. The clique number
of G is χ(G) = n if G contains a clique with n elements and no clique has more
than n elements. If the sizes of the cliques are not bounded, then χ(G) = ∞.
We always have χ(G) ≤ ν(G).

The notion of a zero-divisor graph G(R) of a ring R was introduced by
I. Beck in [3]. The vertices of the graph G(R) are the elements of R and two
distinct vertices r and s are adjacent provided that rs = 0. The first simpli-
fication of Beck’s zero-divisor graph Γ(R) was introduced by D. F. Anderson
and P. S. Livingston in [1]. This zero-divisor graph helps us study the algebraic
properties of rings using graph theoretical tools. S. B. Mulay [8] introduced
the zero-divisor graph ΓE(R) associated with a ring. For a ring R, two zero-
divisors r, s ∈ Z(R)∗ are said to be equivalent if ann(r) = ann(s), where Z(R)
is the set of all zero-divisors of R. The equivalence class of r is denoted by
[r]. The set of vertices of the graph ΓE(R) is the set of equivalence classes
{[r] | r ∈ Z(R)∗}. Distinct classes [r] and [s] are adjacent in ΓE(R) provided
that rs = 0 in R.

We follow the ideas from Mulay, Spiroff and Wickham in [9], who studied the
graph of equivalence classes of zero-divisors of a ring R. This graph has some
advantages over the earlier zero-divisor graph Γ(R). In many cases, ΓE(R)
is finite even when Γ(R) is infinite. In addition, there are no complete graphs
ΓE(R) with three or more vertices, since the graph collapses into a single point.
Every vertex in this graph either corresponds to an associated prime or is
connected to one.
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In this paper we extend this concept to modules, i.e., we define a graph
and derive relationships between the associated primes of M and its graph-
theoretic properties. In [6], the concept of the zero-divisor graph for a ring has
been extended to a module and the authors defined the torsion graph Γ(M) of
an R-module M as one whose vertices are the non-zero torsion elements of M
and two distinct vertices x and y are adjacent if [x : M ][y : M ]M = 0. Here
we define a graph whose set of vertices is the set of equivalence classes {[x] |
x ∈ T (M)∗}, and two distinct torsion elements x, y ∈ T (M)∗ are equivalent if
ann(x) = ann(y). Also, two distinct classes [x] and [y] are adjacent provided
that ann(x)ann(y)M = 0. This graph will be denoted by AE(M). We say
an ideal I of R is an annihilating-ideal if there exists a non-zero ideal J of R
such that IJ = (0). We denote the set of annihilating-ideals of R by A(R).
By the annihilating-ideal graph AG(R) of R we mean the graph with vertices
A(R)∗ = A(R) − {0} such that there is an edge between vertices I and J if
and only if I ̸= J and IJ = (0) [4, 5]. For an R-module M (a ring R), we
denote the set of all ann(x) such that 0 ̸= x ∈ M(R), by ΩR(M) (Ω(R)).
There is a natural bijective map from ΩR(M) (or Ω(R)) to the set of vertices
of AE(M) (or AE(R)) given by I → [x], where I = ann(x). We will slightly
abuse terminology and refer to [x] as an element of ΩR(M) (Ω(R)).

In Section 1, we define the graph AE(M), discuss the relation between the
associated primes of M and the vertices of AE(M) and prove some basic results
about AE(M) and AE(R). In Section 2, we show that a vertex of AE(M) has
degree two if and only if it is an associated prime of M . We then determine
ν(AE(M)), where |V (AE(M))| > 1 and prove that the chromatic number of
AE(M) equals its clique number.

2. The definition and some results about AE(M) and AE(R)

Let M be an R-module. For every x, y ∈ M , we say that x ∼ y if ann(x) =
ann(y). The relation “ ∼ ” is an equivalence relation. The equivalence class of
x is denoted by [x].

Definition. The graph of equivalence classes of torsion elements of an R-
module M , denoted by AE(M), is the graph whose vertices are the classes of
elements in T (M)∗. Also, each pair of distinct classes [x] and [y] are joined by
an edge if ann(x)ann(y)M = 0.

Proposition 2.1. (i) Let R be a Noetherian ring and M be an R-module. If
V (AE(M)) = ∅, then R is an integral domain.

(ii) If R is an integral domain and M is a faithful R-module, then E(AE(M))
= ∅.

Proof. (i) Since R is a Noetherian ring, Ass(M) ̸= ∅. Let P ∈ Ass(M) be
such that ann(x) = P ̸= 0. Thus x ∈ T (M)∗ and [x] ∈ V (AE(M)), which is a
contradiction. So we have P = 0 ∈ Spec(R) and R is an integral domain.
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(ii) Now let [x] and [y] ∈ V (AE(M)) be adjacent. Then ann(x)ann(y) =
0. Since R is an integral domain, ann(x) = 0 or ann(y) = 0, which is a
contradiction. So E(AE(M)) = ∅. □

The converse of the first part of Proposition 2.1 is not true in general. For
example for Z-module Zn, V (AE(Zn)) ̸= ∅, but Z is an integral domain.

In the following we give an example to illustrate the second part of the
Proposition 2.1.

Example 2.2. The Z-module Q
Z is faithful and for every a

b +Z ∈ Q
Z such that

(a, b) = 1, we have ann(ab +Z) = bZ. Thus V (AE(M)) = {[ 1b +Z] | b ∈ N} and
we have E(AE(M)) = ∅. Note that |V (AE(M))| = ∞ but E(AE(M)) = ∅.
Proposition 2.3. Let M be an R-module and ann(M) = P ∈ Spec(R). Then
AE(M) is a star graph or E(AE(M)) = ∅. Furthermore, if P ∈ Max(R), then
|V (AE(M))| = 1.

Proof. Assume that E(AE(M)) ̸= ∅. Then there exist [x], [y] ∈ V (AE(M))
such that ann(x)ann(y) ⊆ P . Since P is a prime ideal, we have ann(x) ⊆ P or
ann(y) ⊆ P . By assumption, P ⊆ ann(x) and P ⊆ ann(y), hence ann(x) = P
or ann(y) = P . Now suppose that ann(x) = P . For every [z] ∈ V (AE(M)),
ann(x)ann(z) ⊆ P and hence AE(M) is a star graph. If P ∈ Max(R), then for
every x ∈ T (M)∗, P ⊆ ann(x) ̸= R. So P = ann(x) and |V (AE(M))| = 1. □

Proposition 2.4. Let M be a module over a Noetherian ring R with m,m
′ ∈

Ass(M) such that m and m
′
are the only maximal elements of ΩR(M). If m

and m
′
are adjacent or there exists x ∈ T (M)∗ such that ann(x) = ann(M),

then AE(M) is connected and diam(AE(M)) ≤ 2.

Proof. Since R is Noetherian, for every z ∈ T (M)∗ we have ann(z) ⊆ m

or ann(z) ⊆ m
′
. Since mm

′ ⊆ ann(M), hence [z] is adjacent to m or m
′
.

Therefore AE(M) is connected. Let [z] be adjacent to m and [w] adjacent to

m
′
. We have ann(z)m ⊆ m

′
and ann(w)m

′ ⊆ m, hence ann(z) ⊆ m
′
and

ann(w) ⊆ m. So ann(z)ann(w) ⊆ mm
′ ⊆ ann(M) and hence [z] and [w] are

adjacent. Therefore, diam(AE(M)) ≤ 2. Now let x ∈ T (M)∗ be such that
ann(x) = ann(M). Since every vertex [y] is adjacent to [x], hence AE(M) is
connected and diam(AE(M)) ≤ 2. □

Proposition 2.5. Let B = {P ∈ Ass(M) | P is minimal in Ass(M)}.
(i) If P,Q ∈ Ass(M) \B, then P and Q are not adjacent.
(ii) If |B| ≥ 3, then no two elements of Ass(M) are adjacent.
(iii) If B = {P,Q}, then the only elements of Ass(M) that can be adjacent

are P and Q.
(iv) If AE(M) is a complete graph, then |Ass(M)| ≤ 2.

Proof. (i) Case 1: B ̸= ∅. Suppose that T is minimal in Ass(M). If P and
Q are adjacent, then PQ ⊆ T and we have P ⊆ T or Q ⊆ T , which is a
contradiction.
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Case 2: B = ∅. Since P ̸∈ B, there exists T ∈ Ass(M) such that T ⊂ P .
Suppose P and Q are adjacent. Then PQ ⊆ T and we have Q ⊆ T . Since
Q ̸∈ B, there exists S ∈ Ass(M) such that S ⊂ Q and we have PQ ⊆ S. Thus
P ⊆ S and hence P ⊆ S ⊆ Q ⊆ T , which is a contradiction. So P and Q are
not adjacent.

(ii) Let P,Q ∈ Ass(M). Since |B| ≥ 3, there exists T ∈ B such that T ̸= P
and T ̸= Q. Assume that P and Q are adjacent. Thus PQ ⊆ T , hence P ⊆ T
or Q ⊆ T . So P = T or Q = T , which is a contradiction. Therefore P and Q
are not adjacent.

(iii) Suppose S, T ∈ Ass(M) are adjacent. Then we have TS ⊆ P and
TS ⊆ Q. Hence T ⊆ P or S ⊆ P and S ⊆ Q or T ⊆ Q. So {T, S} = {P,Q}.

(iv) Let |Ass(M)| ≥ 3 and P,Q, T ∈ Ass(M) be distinct three elements.
Since AE(M) is a complete graph, P and Q are adjacent and hence by part
(i), P ∈ B or Q ∈ B. Let P ∈ B. Also Q and T are adjacent, hence Q ∈ B or
T ∈ B, which is a contradiction by parts (ii) and (iii). □

Proposition 2.6. Let R be a Noetherian ring and |V (AE(R))| ≥ 3. Then
AE(R) is not a complete graph. In particular, for every [z] such that ann(z)
is a maximal element of Ω(R), deg([z]) ≤ 1.

Proof. Suppose that AE(R) is a complete graph and [x], [y] and [z] are three
distinct vertices such that ann(z) is a maximal element of Ω(R). We have
ann(x)ann(z) = 0 and ann(y)ann(z) = 0. Then for every r ∈ ann(x) and
s ∈ ann(z), rs = 0 and hence ann(z) ⊆ ann(r). Now we have ann(z) = ann(r)
and so [r] = [z]. Since rx = 0, [r][x] = [rx] = 0 in ΓE(R). So [z][x] = 0 and
hence zx = 0. Similarly, we have yz = 0. It follows that x, y ∈ ann(z) and
so ann(x) ⊆ ann(y), because ann(x)ann(z) = 0. Similarly, ann(y) ⊆ ann(x)
and hence ann(x) = ann(y). Therefore [x] = [y], which is a contradiction, so
AE(R) is not a complete graph. In particular, for every [z] such that ann(z)
is a maximal element of Ω(R), deg([z]) ≤ 1. □

As the following example shows, for a ring R, we have always V (AE(R)) =
V (ΓE(R)), but AE(R) and ΓE(R) are not necessary isomorphic.

[x]

[y]

[2]

[xy][2y]

[x+ y]

[2 + y]

[x]

[2 + y]

[x+ y]

[2y] [xy]

[2]

[y]

ΓE(R) AE(R)
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Example 2.7. Let R = Z8[x,y]
⟨x2,y2,2x⟩ . Clearly, R is not a quotient of a Dedekind

domain. Also ann(x) = ⟨x, 2⟩, ann(y) = ⟨y⟩, ann(2) = ⟨x, 4⟩, ann(xy) =
⟨x, y, 2⟩, ann(2y) = ⟨x, y, 4⟩, ann(x+ y) = ⟨x− y⟩ and ann(2 + y) = ⟨4y⟩.
Clearly, ΓE(R) is not isomorphic with AE(R).

Proposition 2.8. Let D be a Dedekind domain and I be a non-zero ideal of
R. If R = D

I , then AE(R) ∼= ΓE(R).

Proof. Since R is a quotient of a Dedekind domain, hence R is a PIR. If
x ∈ Z(R)∗, there exists a ∈ Z(R)∗ such that ann(x) = ⟨a⟩. We define the
map f : V (AE(R)) −→ V (ΓE(R)) by f([x]) = [a]. We shall show that f is
one-to-one and onto. Let [x], [y] ∈ V (AE(R)), ann(x) = ⟨a⟩ and ann(y) = ⟨b⟩.
If [x] = [y], then ann(x) = ann(y) and hence ⟨a⟩ = ⟨b⟩. So [a] = [b]. Therefore,
f is well-defined. If [a] = [b], then ann(a) = ann(b). Since ann(x) = ⟨a⟩ and
ann(y) = ⟨b⟩, x ∈ ann(a) = ann(b) and hence xb = 0. Similarly, ya = 0, thus
a ∈ ann(y) and b ∈ ann(x). However, b ∈ ⟨a⟩ and a ∈ ⟨b⟩ and hence ⟨a⟩ = ⟨b⟩.
Therefore, [x] = [y]. So f is one-to-one. Now we show that f is onto. Let
[a] ∈ V (ΓE(R)). So there exists b ∈ D such that a = b+I. Let I = Pα1

1 · · ·Pαk

k

be the decomposition of I into distinct prime (maximal) ideals ofD. Then there

exist {β1, . . . , βk} ⊆ N∪{0} and an ideal J of D such that ⟨b⟩ = P β1

1 · · ·P βk

k J .
For every i (1 ≤ i ≤ k), let Ti = P 2

i ∪P1∪· · ·∪Pi−1∪Pi+1∪· · ·∪Pk. If Pi ⊂ Ti,
by the prime avoidance theorem, we have Pi = P 2

i and hence PiRPi = (PiRPi)
2.

By Nakayama’s Lemma PiRPi
= 0, hence Pi = 0, which is a contradiction. So

Pi ⊈ Ti. Let pi ∈ Pi − Ti and s = pγ1

1 · · · pγk

k , where

γi =

{
αi − βi if βi < αi,
0 if βi ≥ αi.

Let x = s + I. Now we have ann(x) = ann(s + I) = Pα1−γ1

1 · · ·Pαk−γk

k + I.

Let t = pα1−γ1

1 · · · pαk−γk

k + I. Then ann(x) = ⟨t⟩ and since ann(a) = ann(t) =
P γ1

1 · · ·P γk

k + I, we have [t] = [a]. So f([x]) = [a] and hence f is onto. Finally,
[x] and [y] are adjacent in AE(R) if and only if ann(x)ann(y) = 0 if and only
if ⟨a⟩⟨b⟩ = 0 if and only if ab = 0 if and only if [a] and [b] are adjacent in
ΓE(R). □

The following example illustrate Proposition 2.8.

Example 2.9. Let R = M = Z24. Furthermore,

T (Z24)
∗ = {2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22}.

Now V (ΓE(Z24)) = V (AE(Z24)) = {[2], [3], [4], [6], [8], [12]}. Also, ann(2) =
⟨12⟩, ann(3) = ⟨8⟩, ann(4) = ⟨6⟩, ann(6) = ⟨4⟩, ann(8) = ⟨3⟩ and ann(12) =
⟨2⟩. Therefore by Proposition 2.8, ΓE(Z24) ∼= AE(Z24).
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[2]

[3]

[4]

[6]

[8]

[12]

[2]

[3]

[4]

[6]

[8]

[12]

ΓE(Z24) AE(Z24)

3. Relationship between graph-theoretic properties and associated
prime ideals of a module over a Dedekind domain

Let M be a torsion finitely generated module over a Dedekind domain R.
In this section, we prove that, if |V (AE(M))| ≥ 5, then a vertex of AE(M) has
degree two if and only if it is an associated prime of M .

Theorem 3.1. Let M be a torsion finitely generated module over a Dedekind
domain R. Suppose that ann(M)=Pα1

1 · · ·Pαk

k is the decomposition of ann(M)

into the distinct prime ideals of R. Then |ΩR(M)| = (
∏k

i=1(αi + 1)) − 1 and
|Ass(M)| = k.

Proof. Since R is a Dedekind domain and M is a torsion finitely generated
R-module, by [7, Theorem 10.15], there exist cyclic submodules of M , ⟨xi⟩,
1 ≤ i ≤ n, such that M ∼=

⊕n
i=1⟨xi⟩. If x = x1 + · · · + xn, then ann(x) =

ann(M). For every i, 1 ≤ i ≤ k, let Ti = P 2
i ∪ P1 ∪ · · · ∪ Pi−1 ∪ Pi+1 ∪

· · · ∪ Pk. As in the proof of Proposition 2.8, we have Pi ⊈ Ti, 1 ≤ i ≤
k. Then there exist ri ∈ Pi − Ti, 1 ≤ i ≤ k such that PiRPi

= ( ri1 ). Let

r = rβ1

1 · · · rβk

k x, where 0 ≤ βi ≤ αi. We have ann(rx) = {s ∈ R | sr ∈
ann(x)} and so P γ1

1 · · ·P γk

k ⊆ ann(rx), where γi = αi − βi (1 ≤ i ≤ k). If

for some i (1 ≤ i ≤ k), P γ1

1 · · ·P γi−1

i−1 P γi−1
i P

γi+1

i+1 · · ·P γk

k ⊆ ann(rx), we have

t = rα1
1 · · · rαi−1

i−1 rαi−1
i r

αi+1

i+1 · · · rαk

k ∈ ann(x). So t
1 ∈ Pαi

i RPi
= (

r
αi
i

1 ). We have
r
α1
1 ···r

αi−1
i−1 r

αi+1
i+1 ···rαk

k

1 ∈ ( ri1 ) = PiRPi
and hence there exists s ∈ R − Pi such

that srα1
1 · · · rαi−1

i−1 r
αi+1

i+1 · · · rαk

k ∈ Pi, which is a contradiction. So ann(rx) =
P γ1

1 · · · P γk

k and thus T = {P γ1

1 · · ·P γk

k ̸= R | 0 ≤ γi ≤ αi} ⊆ ΩR(M). Clearly

ΩR(M) ⊆ T and so |ΩR(M)| = (
∏k

i=1(αi + 1))− 1 and |Ass(M)| = k. □
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Since R is a Dedekind domain, S = R
ann(M) is an Artinian principal ideal

ring. So ΩR(M) = ΩR(S) and AE(M) = AE(S), where S is an R-module.
Also, Ω(S) is the set of all non-trivial ideals of S and hence AE(S) = AG(S).

Let M be a torsion finitely generated module over a Dedekind domain R.
Suppose that ann(M) = Pα1

1 · · ·Pαk

k is the decomposition of ann(M) into
prime ideals of R. In this section we find Pi (1 ≤ i ≤ k), k and αi (1 ≤ i ≤ k),
by the graph AE(M). Recall that there exists a natural bijective map from
ΩR(M) to the set of vertices of AE(M) given by I −→ [x], where I = ann(x).

By Theorem 3.1, we have |Ass(M)| = k, |V (AE(M))| = (
∏k

i=1(αi + 1)) − 1

and V (AE(M)) = {P β1

1 · · ·P βk

k ̸= R | 0 ≤ βi ≤ αi}.

Lemma 3.2. Let M be a torsion finitely generated module over a Dedekind do-
main R. Suppose that ann(M) = Pα1

1 · · ·Pαk

k is the decomposition of ann(M)

into the prime ideals of R. Then V (AE(M)) = {P β1

1 · · ·P βk

k ̸= R | 0 ≤ βi ≤ αi}
and

deg(P β1

1 · · ·P βk

k ) =



(
k∏

i=1

(βi + 1))− 2 if βi = αi, ∀i,

(
k∏

i=1

(βi + 1))− 1 if βi ≥ αi

2 , ∀i,
k∏

i=1

(βi + 1) if ∃i, βi <
αi

2 .

Proof. By Definition, two distinct vertices P β1

1 · · ·P βk

k and P γ1

1 · · ·P γk

k are ad-
jacent if and only if βi + γi ≥ αi (1 ≤ i ≤ k). Hence the neighbourhood of

P β1

1 · · ·P βk

k ∈ V (AE(M)), is the set A = {P γ1

1 · · ·P γk

k ̸= R | αi − βi ≤ γi ≤
αi,∀i, 1 ≤ i ≤ k}.

Now we consider the following three cases:
(i) Let for every i (1 ≤ i ≤ k), βi = αi. Since AE(M) does not have

any loop, A = {P γ1

1 · · ·P γk

k | 0 ≤ γi ≤ αi} − {Pα1
1 · · ·Pαk

k , P 0
1 · · ·P 0

k }. So

deg(Pα1
1 · · ·Pαk

k ) = (
∏k

i=1(αi + 1))− 2.
(ii) Let there exist i (1 ≤ i ≤ k) such that βi ̸= αi and for every i (1 ≤ i ≤ k),

βi ≥ αi

2 . So αi ≤ 2βi and hence P β1

1 · · ·P βk

k ∈ A. Since AE(M) does not

have any loop, A = {P γ1

1 · · ·P γk

k | αi − βi ≤ γi ≤ αi} − {P β1

1 · · ·P βk

k }. So

deg(P β1

1 · · ·P βk

k ) = (
∏k

i=1(βi + 1))− 1.
(iii) Let there exist i (1 ≤ i ≤ k) such that βi <

αi

2 . SoA = {P γ1

1 · · ·P γk

k | αi−
βi ≤ γi ≤ αi}, and hence deg(P β1

1 · · ·P βk

k ) =
∏k

i=1(βi + 1). □

Theorem 3.3. Let M be a torsion finitely generated module over a Dedekind
domain R. If |V (AE(M))| ≥ 5, then a vertex of AE(M) has degree two if and
only if it is an associated prime of M .

Proof. As in Lemma 3.2, we have ann(M) = Pα1
1 · · ·Pαk

k . In the proof of

Lemma 3.2, we showed that V (AE(M)) = {P β1

1 · · ·P βk

k ̸= R | 0 ≤ βi ≤ αi}
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and

deg(P β1

1 · · ·P βk

k ) =



(
k∏

i=1

(βi + 1))− 2 if βi = αi, ∀i,

(
k∏

i=1

(βi + 1))− 1 if βi ≥ αi

2 , ∀i,
k∏

i=1

(βi + 1) if ∃i, βi <
αi

2 .

By Theorem 3.1, we have Ass(M) = {P1, . . . , Pk} and by Lemma 3.2, degPi =

1+1 = 2. Conversely, let deg(P β1

1 · · ·P βk

k ) = 2. If (
∏k

i=1(βi+1))−2 = 2, then

(
∏k

i=1(βi + 1)) = 4. We have the following two cases:
(i) α1 = 3 and for every i ̸= 1, αi = 0.
(ii) α1 = α2 = 1 and for every i ̸= 1, 2, αi = 0.
In both above cases, |V (AE(M))| ≤ 4, which is a contradiction.

If (
∏k

i=1(βi + 1)) − 1 = 2, then (
∏k

i=1(βi + 1)) = 3. So β1 = 2 and for
every i ̸= 1, βi = 0. Hence α1 ≤ 4 and for every i ̸= 1, αi = 0. Therefore

|V (AE(M))| ≤ 4, which is a contradiction. Now let
∏k

i=1(βi+1) = 2. So there
exists i (1 ≤ i ≤ k) such that βi + 1 = 2 and for every j ̸= i (1 ≤ j ≤ k),
βj + 1 = 1. So βi = 1 and for every j ̸= i (1 ≤ j ≤ k), βj = 0. Therefore,

P β1

1 · · ·P βk

k = Pi ∈ Ass(M). □

If |V (AE(M)| = 1, 2, 3 or 4, then Theorem 3.3 is not necessary true. For
example for Z-modules Z2, Z4, Z8 and Z16 we have AE(Z2) ∼= K1, AE(Z4) ∼=
K2, AE(Z8) ∼= K3 and AE(Z16) ∼= Θ2,2,1, where Θ2,2,1 is the graph K4 with
one edge deleted. But Ass(Z2) = Ass(Z4) = Ass(Z8) = Ass(Z16) = {2Z}.

The following examples illustrate Theorem 3.3, when R is a PID and R is
a Dedekind domain but it is not a PID, respectively.

[1]

[2]

[3]

[4]

[6]

[8]

[12]

AE(Z24)
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Example 3.4. Let R = Z and M = Z24. We have

V (AE(Z24)) = {[1], [2], [3], [4], [6], [8], [12]}.
Then Ass(Z24) = {ann(12) = 2Z, ann(8) = 3Z}.

Example 3.5. Let R = Z[
√
10], I = ⟨10, 10

√
10⟩ andM = R

I . We know that R

is a Dedekind domain, but it is not a PID. We have ann(5
√
10+I) = ⟨2,

√
10⟩,

ann(2
√
10 + I) = ⟨5,

√
10⟩, ann(5 + I) = ⟨2, 2

√
10⟩, ann(2 + I) = ⟨5, 5

√
10⟩,

ann(
√
10+I) = ⟨10,

√
10⟩, ann(2+5

√
10+I) = ⟨10, 5

√
10⟩, ann(5+2

√
10+I) =

⟨10, 2
√
10⟩ and ann(1 + I) = ⟨10, 10

√
10⟩.

Put v1 = [5
√
10+I], v2 = [2

√
10+I], v3 = [5+I], v4 = [2+I], v5 = [

√
10+I],

v6 = [2 + 5
√
10 + I], v7 = [5 + 2

√
10 + I] and v8 = [1 + I].

v1

v2

v3

v4v5

v6

v7

v8

AE(M)

Then Ass(M) = {P1 = ⟨2,
√
10⟩, P2 = ⟨5,

√
10⟩}.

Corollary 3.6. Let R be a Dedekind domain and 0 ̸= I be an ideal of R and
S = R

I . If |V (AE(S))| ≥ 4, then a vertex of AE(S) has degree one if and only
if it is an associated prime ideal of S.

Proof. The proof follows from Theorem 3.3 and the observation after Theorem
3.3. □

In Example 2.9, AE(Z24) is an example for Corollary 3.6.

Corollary 3.7. Let R be a Dedekind domain and M be a torsion finitely gen-
erated R-module. If AE(M) = Cn, then n = 3.

Proof. By the proof of Theorem 3.1, there exists x ∈ T (M)∗ such that ann(M) =
ann(x) and hence [x] is adjacent to any vertex. So deg([x]) = n− 1. Since the
degree of any vertex in Cn is two, hence n− 1 = 2 and we have n = 3. □

Proposition 3.8. Let R be a Dedekind domain and M be a torsion finitely
generated R-module. If AE(M) = Kn, then 1 ≤ n ≤ 3.
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Proof. Since AE(M) is complete, by part (iv) of Proposition 2.5, we have
|Ass(M)| ≤ 2. Suppose that Ass(M) = {P,Q}. Since AE(M) is complete,
PQ ⊆ ann(M). But ann(M) ⊆ P and ann(M) ⊆ Q, hence ann(M) ⊆ PQ
and thus ann(M) = PQ. So by Theorem 3.1, V (AE(M)) = {P,Q, PQ} and
hence AE(M) = K3. Now suppose that |Ass(M)| = 1 and Ass(M) = {P}. By
Theorem 3.1, ann(M) = Pα for some α ∈ N. Thus V (AE(M)) = {P, . . . , Pα}.
If α ≥ 4, then P and P 2 are not adjacent, which is a contradiction. Therefore,
1 ≤ α ≤ 3 and we have 1 ≤ n ≤ 3. □

Theorem 3.9. Let M1 and M2 be torsion finitely generated modules over
a Dedekind domain R such that AE(M1) ∼= AE(M2) and |V (AE(M1))| =

|V (AE(M2))| ≥ 5. If ann(M1) = Pα1
1 · · ·Pαk

k and ann(M2) = Qβ1

1 · · ·Qβs
s

are the decompositions of ann(Mi), i = 1, 2, into prime ideals of R such that
α1 ≥ · · · ≥ αk and β1 ≥ · · · ≥ βs, then k = s and |Ass(M1)| = |Ass(M2)| = k.
Furthermore, for every i, 1 ≤ i ≤ k, αi = βi.

Proof. By Theorem 3.1, k = |Ass(M1)| = |Ass(M2)| = s. If α1 = 1, then
it is clear that αi = βi = 1 (1 ≤ i ≤ k). So let α1 > 1. By Lemma 3.2,
deg(Pα1−1

1 Pα2
2 · · ·Pαk

k ) = α1(α2 + 1) · · · (αk + 1) − 1 is the second maximum

degree of AE(M1). Then α1(α2+1) · · · (αk+1)−1 = deg(Pα1−1
1 Pα2

2 · · ·Pαk

k ) =

deg(Qβ1−1
1 Qβ2

2 · · ·Qβk

k ) = β1(β2 + 1) · · · (βk + 1) − 1 and we have
∏k

i=1(αi +

1) =
∏k

i=1(βi + 1). Thus α1 = β1. Now for every 0 ≤ s ≤ α1, we have

deg(Pα1−s
1 Pα2

2 · · ·Pαk

k ) = deg(Qα1−s
1 Qβ2

2 · · ·Qβk

k ) and there exists s such that

deg(Pα1−s−1
1 Pα2

2 · · ·Pαk

k ) < deg(Pα1
1 Pα2−1

2 Pα3
3 · · ·Pαk

k )

≤ deg(Pα1−s
1 Pα2

2 · · ·Pαk

k ).

Therefore, deg(Pα1
1 Pα2−1

2 Pα3
3 · · · pαk

k ) = deg(Qα1
1 Qβ2−1

2 Qβ3

3 · · ·Qβk

k ). So α2 =
β2. Let αi = βi, for every i, 1 ≤ i ≤ t− 1. Then there exist si, 0 ≤
si ≤ αi (1 ≤ i ≤ t− 1), such that deg(Pα1

1 · · ·Pαt−1

t−1 Pαt−1
t P

αt+1

t+1 · · ·Pαk

k ) ≤
deg(Pα1−s1

1 · · ·Pαt−1−st−1

t−1 Pαt
t · · ·Pαk

k ). Also for every i (1 ≤ i ≤ t− 1), we
have

deg(Pα1−s1
1 · · ·Pαi−1−si−1

i−1 Pαi−si−1
i P

αi+1−si+1

i+1 · · ·Pαt−1−st−1

t−1 Pαt
t · · ·Pαk

k )

< deg(Pα1
1 · · ·Pαt−1

t−1 Pαt−1
t P

αt+1

t+1 · · ·Pαk

k ).

Hence

deg(Pα1
1 · · ·Pαt−1

t−1 Pαt−1
t P

αt+1

t+1 · · ·Pαk

k )=deg(Qα1
1 · · ·Qαt−1

t−1 Qβt−1
t Q

βt+1

t+1 · · ·Qβk

k )

and it follows that αt = βt. Therefore for every i (1 ≤ i ≤ k), αi = βi. □

Note that Theorem 3.9 is true, when |V (AE(M1))| = |V (AE(M2))| = 1, 2 or
4. Also Theorem 3.9 is not necessarily true, when |V (AE(M1))| = |V (AE(M2))|
= 3. For example for Z-modules Z6 and Z8, we have AE(Z6) ∼= AE(Z8) ∼= K3.
But Ass(Z6) = {2Z, 3Z}, Ass(Z8) = {2Z}, ann(Z8) = (2Z)3 and ann(Z6) =
(2Z)(3Z).
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Let n ∈ N and p be a prime number. Then by Theorem 3.1, we have
|ΩZ(Zpn)| = |V (AE(Zpn))| = n. Now for every n ∈ N, we shall obtain the
number of graphs Γ (up to isomorphism) such that there exist a Dedekind
domain R and a torsion finitely generated R-module M with |V (AE(M))| = n
and AE(M) ∼= Γ. Let k ∈ N and {α1, . . . , αk} ⊆ N be such that n + 1 =∏k

i=1(αi + 1). Also, m = pα1
1 · · · pαk

k , where pi (1 ≤ i ≤ k) are prime numbers
and for i ̸= j (1 ≤ i, j ≤ k), pi ̸= pj . Then for Z-module Zm, we have

ann(Zm) = (p1Z)α1 · · · (pkZ)αk and |V (AE(Zm))| = (
∏k

i=1(αi + 1)) − 1 =
n. Conversely, let the graph Γ be such that |V (Γ)| = n and suppose that
there exist a Dedekind domain R and a torsion finitely generated R-module
M such that AE(M) ∼= Γ. Let ann(M) = Pα1

1 · · ·Pαk

k be the decomposition
of ann(M) to prime ideals of R. Let m = pα1

1 · · · pαk

k , where pi (1 ≤ i ≤ k)
are prime numbers and for i ̸= j (1 ≤ i, j ≤ k), pi ̸= pj . So for Z-module
Zm, we have AE(M) ∼= AE(Zm). Then the number of graphs Γ such that
there exist a Dedekind domain R and a torsion finitely generated R-module
M with AE(M) ∼= Γ and |V (AE(M))| = n, is equal the number of products

n+ 1 =
∏k

i=1 ai, where k ∈ N and ai ≥ 2 (1 ≤ i ≤ k).

Example 3.10. Since 7 + 1 = 8 and 8 = 8, 8 = 4 × 2, 8 = 2 × 2 × 2, there
exist three graphs Γ such that there exist a Dedekind domain R and a torsion
finitely generated R-module M with AE(M) ∼= Γ and |V (AE(M))| = 7. For
example, Z128, Z30, Z24.

The number 3 is an exception, because 3+1 = 4 and 4 = 4, 4 = 2×2. Hence
we must have two graphs such that there exist a Dedekind domain R and a
torsion finitely generated R-moduleM with |V (AE(M))| = 3, and AE(M) ∼= Γ.
But AE(Zp3) ∼= AE(Zpq) ∼= K3, where p, q are prime numbers.

Then for every torsion finitely generated module M over a Dedekind domain
R, there exists m ∈ N such that AE(M) ∼= AE(Zm). Now let ann(M) =
Pα1
1 · · ·Pαk

k be the decomposition of ann(M) into prime ideals of R and m =

pβ1

1 · · · pβs
s be the decomposition of m into prime numbers of Z such that α1 ≥

· · · ≥ αk and β1 ≥ · · · ≥ βs. By Theorem 3.9, we have k = s and for every
i (1 ≤ i ≤ k), αi = βi.

Theorem 3.11. Let M be a finitely generated module over a Dedekind domain

R with ann(M) ̸∈ Spec(R). Suppose that ann(M) = Pα1
1 · · ·Pαk

k Qβ1

1 · · ·Qβt

t

is the decomposition of ann(M) into prime ideals of R such that for every
i (1 ≤ i ≤ k), αi is even and for every j (1 ≤ j ≤ t), βj is odd. Then

ν(AE(M)) = (
∏k

i=1(
αi

2 + 1)
∏t

j=1(
βj+1

2 )) + t.

Proof. Let ann(M)=T γ1

1 · · ·T γs
s , where {T1, . . . , Ts}={P1, . . . , Pk, Q1, . . . , Qt}

and {γ1, . . . , γs} = {α1, . . . , αk, β1, . . . , βt}. We define the function f : N −→ N
by

f(γ) =

{ γ
2 + 1 if γ is even,
γ+1
2 if γ is odd.
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Now we consider {(i1, . . . , is) | 0 ≤ ij ≤ γj and 1 ≤ j ≤ s} with the following
ordering:

(0, . . . , 0) < (1, 0, . . . , 0) < · · · < (γ1, 0, . . . , 0) < (0, 1, 0, . . . , )

< (1, 1, 0, . . . , 0) < (γ1, 1, 0, . . . , 0) < (0, 2, . . . , 0)

< (1, 2, . . . , 0) < · · · < (0, γ2, 0 · · · , 0) < (1, γ2, 0, . . . , 0)

< · · · < (0, . . . , 0, γs) < (1, 0, . . . , 0, γs) < · · · < (γ1, . . . , γs).

For every (i1, . . . , is), we consider the subsets V(i1,...,is) of V (AE(M)) that
satisfy the following conditions:

(i) T γ1−i1
1 · · ·T γs−is

s ∈ V(i1,...,is);
(ii) for every (l1, . . . , ls) < (i1, . . . , is), V(i1,...,is)

⋂
V(l1,...,ls) = ∅;

(iii) for every v ∈ V (AE(M)) such that v ̸∈
⋃

(l1,...,ls)<(i1,...,is)
V(l1,...,ls) and

v and T γ1−i1
1 · · ·T γs−is

s are not adjacent, then v ∈ V(i1,...,is).
Now we have V(i1,0,...,0) ̸= ∅. If γ1 is even, then 0 ≤ i1 ≤ f(γ1)− 1 and

if γ1 is odd, then 0 ≤ i1 ≤ f(γ1). Also, V(i1,i2,0,...,0) ̸= ∅, when 0 ≤ i1 ≤
f(γ1)− 1 and 0 ≤ i2 ≤ f(γ2)− 1. Moreover, if γ1 is odd (or γ2 is odd), then
V
(
γ1+1

2 ,0,...,0)
̸= ∅ (or V

(0,
γ2+1

2 ,0,...,0)
̸= ∅). Similarly, we have V(i1,...,is) ̸= ∅,

when 0 ≤ ij ≤ f(γj)− 1 and if γj is odd, we have V
(0,...,0,

γj+1

2 ,0,...,0)
̸= ∅. Let

I = {γj | γj is odd, 1 ≤ j ≤ s}, |I| = t, A = {V(i1,...,is) | V(i1,...,is) ̸= ∅} and

|A| = a. Then a =
∏s

i=1 f(γi) + t. Since
⋃

(i1,...,is)
V(i1,...,is) = V (AE(M))

and for every V(i1,...,is), V(l1,...,ls) ∈ A, V(i1,...,is) ∩V(l1,...,ls) = ∅ and the vertices
of no V(i1,...,is) are adjacent, the set A is a colour partition of AE(M). Since

|A| = a, hence ν(AE(M)) ≤ a. Now let T γ1−i1
1 · · ·T γs−is

s ∈ V(i1,...,is) and

T
γ1−i

′
1

1 · · ·T γs−i
′
s

s ∈ V(i1
′
,...,i′s)

. We consider j, 1 ≤ j ≤ s. Now we have the

following two cases:
(i) γj is even. If 0 ≤ ij ≤ γj

2 and 0 ≤ i
′

j ≤ γj

2 , then ij + i
′

j ≤ γj . So

2γj − (ij + i
′

j) ≥ γj .

(ii) γj is odd. If 0 ≤ ij ≤ γj−1
2 and 0 ≤ i

′

j ≤
γj−1

2 , then ij + i
′

j ≤ γj − 1. So

2γj − (ij + i
′

j) ≥ γj + 1. But if ij =
γj+1

2 and 0 ≤ i
′

j ≤
γj−1

2 , then ij + i
′

j ≤ γj

and hence 2γj − (ij + i
′

j) ≥ γj . Therefore, the induced subgraph generated by

{T γ1−i1
1 · · ·T γs−is

s | T γ1−i1
1 · · ·T γs−is

s ∈ V(i1,...,is)} is the complete graph Ka.
So ν(AE(M)) ≥ a and hence

ν(AE(M)) = a = (

s∏
i=1

f(γi)) + t = (

k∏
i=1

(
αi

2
+ 1)

t∏
j=1

(
βj + 1

2
)) + t.

□

Now suppose ann(M) ∈ Spec(R). Since |V (AE(M))| = 1, hence ν(AE(M))
= 1. But by Theorem 3.11, we have ν(AE(M)) = 1+1

2 + 1 = 2. Therefore,
Theorem 3.11 is not necessarily valid in the case ann(M) ∈ Spec(R).
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In Example 3.5, we show that |V (AE(M))| = 8 and |Ass(M)| = 2. Then we
have (α1 + 1)(α2 + 1) = 8 + 1 = 9, hence α1 = α2 = 2. So ann(M) = P 2

1P
2
2 .

In the following example, we obtain ν(AE(M)) for Example 3.5.

Example 3.12. Let R = Z[
√
10], I = ⟨10, 10

√
10⟩ and M = R

I . Since

ann(M) = P 2
1P

2
2 , we have ν(AE(M)) = (22 + 1)× ( 22 + 1) = 4.

v1

v2

v3

v4

v5

v6

v7 v8

AM (R)

Corollary 3.13. Let M be a torsion finitely generated module over a Dedekind
domain R. Then the clique number and the chromatic number of AE(M) are
equal.

Proof. In the notation of Theorem 3.11, we have ν(AE(M)) = a, where Ka

is a subgraph of AE(M). So a ≤ χ(AE(M)). Let a ̸= χ(AE(M)). Then
there exists b > a such that Kb is a complete subgraph of AE(M) and hence
ν(AE(M)) ≥ b > a, which is a contradiction. So ν(AE(M)) = χ(AE(M)) =
a. □
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