• Title/Summary/Keyword: Zero-current switching

Search Result 603, Processing Time 0.025 seconds

Input-Series-Output-Parallel Connected DC/DC Converter for a Photovoltaic PCS with High Efficiency under a Wide Load Range

  • Lee, Jong-Pil;Min, Byung-Duk;Kim, Tae-Jin;Yoo, Dong-Wook;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.9-13
    • /
    • 2010
  • This paper proposes an input-series-output-parallel connected ZVS full bridge converter with interleaved control for photovoltaic power conditioning systems (PV PCS). The input-series connection enables a fully modular power-system architecture, where low voltage and standard power modules can be connected in any combination at the input and/or at the output, to realize any given specifications. Further, the input-series connection enables the use of low-voltage MOSFETs that are optimized for a very low RDSON, thus, resulting in lower conduction losses. The system costs decrease due to the reduced current, and the volumes of the output filters due to the interleaving technique. A topology for a photovoltaic (PV) dc/dc converter that can dramatically reduce the power rating and increase the efficiency of a PV system by analyzing the PV module characteristics is proposed. The control scheme, consisting of an output voltage loop, a current loop and input voltage balancing loops, is proposed to achieve input voltage sharing and output current sharing. The total PV system is implemented for a 10-kW PV power conditioning system (PCS). This system has a dc/dc converter with a 3.6-kW power rating. It is only one-third of the total PV PCS power. A 3.6-kW prototype PV dc/dc converter is introduced to experimentally verify the proposed topology. In addition, experimental results show that the proposed topology exhibits good performance.

Effect of R-C Compensation on Switching Regulation of CMOS Low Dropout Regulator

  • Choi, Ikguen;Jeong, Hyeim;Yu, Junho;Kim, Namsoo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.3
    • /
    • pp.172-177
    • /
    • 2016
  • Miller feedback compensation is introduced in a low dropout regulator (LDO) in order to obtain a capacitor-free regulator and improve the fast transient response. The conventional LDO has a limited bandwidth because of the large-size output capacitor and parasitic gate capacitance in the power MOSFET. In order to obtain a stable frequency response without the output capacitor, LDO is designed with resistor-capacitor (R-C) compensation and this is achieved with a connection between the gain-stage and the power MOS. An R-C compensator is suggested to provide a pole and zero to improve the stability. The proposed LDO is designed with the 0.35 μm CMOS process. Simulation testing shows that the phase margin in the Bode plot indicates a stable response, which is over 100o. In the load regulation, the transient time is within 55 μs when the load current changes from 0.1 to 1 mA.

New ZVZCS PWM Converter For High Power Application (대전력 응용을 위한 새로운 ZVZCS PWM 컨버어터)

  • Ryoo, Hong-J.;Cho, Jung-G.;Yoo, Dong-W.;Rim, Geun-H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.521-524
    • /
    • 1996
  • A new zero voltage and nero current switching(ZVZCS) full bridge(FB) PWM converter b proposed to improve the performance of the previously presented ZVZCS-FB-PWM converters [7,8]. By adding a secondary active clamp and controlling the clamp switch moderately, ZVS(for leading-leg switches) are ZCS(for lagging-leg switches) are achieved without nay lossy components, the reverie avalanche break down of leading-leg IGBTs[7] or the saturable reactor in the primary[8]. Many advantages including simple circuit topology, high efficiency, and low cost mate the new converter attractive for high voltage and high power(> 10 kW) applications. The principle of operation is explained and analyzed. The features and design considerations of the new converter are also illustrated and verified on an 1.8 kW, 100 kHz IGBT based experimental circuit.

  • PDF

A Novel Three Level DC/DC Converter for High power applications operating from High Input Voltage (대용량 및 높은 입력전압에 적합한 새로운 Three Level DC/DC 컨버터)

  • Han S.K.;Oh W.S.;Moon G.W.;Youn M.J.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.317-322
    • /
    • 2003
  • A novel three-level DC/DC converter (TLC)for high power applications operating from high input voltage Is proposed. Its switch voltage stress can be ensured to be only one-half of the Input voltage. Nevertheless, since all input voltage is applied to the transformer primary side, it has good turns ratio. The driving method of each module is same as those of the conventional phase-shifted ZVS full bridge PWM converter (PSFB) and the zero-voltage-switching (ZVS) of the leading leg are achieved exactly in the same manner as that of the PSFB. Moreover, its three-level operation can considerably reduce the current ripple through the output inductor and it has no problems of the DC-link voltage unbalance. Therefore, it features a low voltage stress, high efficiency, low EMI, high power density, and small sized filter. To confirm the operation, validity, and features of the proposed circuit, experimental results from a 200W, 600V/DC-48V/DC prototype are presented.

  • PDF

Control of a Bidirectional Z-Source Inverter for Electric Vehicle Applications in Different Operation Modes

  • Ellabban, Omar;Mierlo, Joeri Van;Lataire, Philippe
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.120-131
    • /
    • 2011
  • This paper proposes two control strategies for the bidirectional Z-source inverters (BZSI) supplied by batteries for electric vehicle applications. The first control strategy utilizes the indirect field-oriented control (IFOC) method to control the induction motor speed. The proposed speed control strategy is able to control the motor speed from zero to the rated speed with the rated load torque in both motoring and regenerative braking modes. The IFOC is based on PWM voltage modulation with voltage decoupling compensation to insert the shoot-through state into the switching signals using the simple boost shoot-through control method. The parameters of the four PI controllers in the IFOC technique are designed based on the required dynamic specifications. The second control strategy uses a proportional plus resonance (PR) controller in the synchronous reference frame to control the AC current for connecting the BZSI to the grid during the battery charging/discharging mode. In both control strategies, a dual loop controller is proposed to control the capacitor voltage of the BZSI. This controller is designed based on a small signal model of the BZSI using a bode diagram. MATLAB simulations and experimental results verify the validity of the proposed control strategies during motoring, regenerative braking and grid connection operations.

Spike Current Control Circuit for Two-stage Low Frequency Square wave Electric Ballast with Zero-Voltage Switching (ZVS를 이용한 2단 저주파 구형파 전자식 안정기의 스파이크 전류 제어)

  • Jung, Woo-Jin;Yoo, Chang-Gyu;Lee, Woo-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.179-181
    • /
    • 2009
  • 고압 방전 램프는 점등 후부터 정상상태에 이르기까지 방전관 내부의 온도 및 압력이 광범위하게 변화하는 복잡한 동작 특성으로 모델링이 어렵다. 이러한 특성은 램프를 구동하는 안정기의 설계에 어려움이 따른다. 램프의 구동에는 초기 점화 시 높은 점화용 전압 펄스를 필요로 한다. 점화 후에 정상상태에 다다르면 램프 전극의 소모를 줄이기 위해 교류로 구동되어야 한다. 하지만 램프를 교류로 구동하게 되면 음향 공진 현상이 발생할 수 있다. 음향 공진 현상은 램프 구동 전류의 맥동성분이 큰 경우에도 발생을 할 수 있으므로 구동 전류의 맥동 성분의 크기는 최소화 돼야 한다. 램프의 수명시간을 길게 하려면, 안정기는 램프를 정격전력으로 구동하여야 한다. 따라서 안정기에서는 정전력 제어가 필요하게 된다. 램프 전류의 극성이 변화할 때, 램프 전류는 spike전류와 중첩이 된다. 본 논문에서는 spike 전류를 저주파구형파 램프 전류의 포락범위 안에 유지하고, 고주파 스위칭시손실을 줄이기 위해 소프트 스위칭 기법을 이용한 회로 설계를 제안했다. 제안된 방법은 시뮬레이션 및 이론적 수식적 방법으로 검증 했다.

  • PDF

Resonant Step-Down DC/DC Converter to Reduce Voltage Stresses of Motor Driving Inverter under 3-phase AC Utility Line Condition (3상 전원 조건의 모터 구동 인버터 내압 저감을 위한 공진 강압형 DC/DC 컨버터)

  • Kang, Kyung-Soo;Kim, Sang-Eon;Lee, Joon-Hwan;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.391-398
    • /
    • 2014
  • This paper presents a resonant step-down DC/DC converter to reduce the voltage stresses of a 3-phase inverter module under the three-phase AC utility line condition. Under this condition, a conventional 3-phase inverter module suffers from high voltage stresses as a result of the high rectified DC link voltage; hence, a high-cost high-voltage-rating inverter module must be used. However, using the proposed converter, a low-cost low-voltage-rating inverter module may be adopted to drive the motor even under the 3-phase AC line condition. The proposed converter, which can be realized with small size inductor and low-voltage-rating semiconductor devices, operates at a high-efficiency mode because of the zero-current switching operations of all the semiconductor devices. The operational principles are explained and a design example is provided in the study. Experimental results demonstrate the validity of the proposed converter.

Research on the Multi - purpose Nd:YAG Laser Power System using LLC Converter (LLC 공진형 컨버터를 사용한 다용도 Nd:YAG 레이저 전원장치 설계)

  • Zheng, Tao;Kim, Hee-Je;Lee, Jae-cheol;Xu, Guo-Cheng
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.6
    • /
    • pp.885-890
    • /
    • 2015
  • LLC resonant converter has been widely used because of its high efficiency and high energy density. In this paper, we designed a LLC resonant converter as the main power supply of the Nd:YAG pulse laser. First harmonic approximation (FHA) is used to model the LLC resonant converter. FHA equivalent circuit model and the transfer function of the LLC resonant converter is proposed. Soft start technology is also used to suppress the surge current. The laser output simulation test result is identical with the practical test, the laser energy of every pulse can reach up to 2.5J, and the pulse per second (PPS) can be adjusted from 6 to 18. The power system is verified stable and reliable by both of the simulation and experiment results.

Fixed system of action waveform by pulse module special quality of obstetrics and gynecology pulse style $CO_2$ laser relationship embodiment (산부인과 펄스형 $CO_2$ 레이저의 펄스모듈 특성에 의한 동작파형의 일정한 시스템의 구현)

  • Kim, Whi-Young
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.159-161
    • /
    • 2007
  • $CO_2$ laser sees that is most suitable to get this effect through minimum formation damage and advantage that is root enemy of effect that happen in minimum cellular tissue depth of 0.1mm is stable living body organization or internal organs institution. Formation damage by ten can be related in formation's kind or energy density, length of evaporation time. If shorten evaporation time, surroundings cellular thermal damage 200 - because happen within 400ums laser beam in rain focus sacred ground surroundings cellular tissue without vitiation me by evaporation Poe of very small floor as is clean steam can. Application is possible to vulva cuticle cousins by a paternal aunt quantity, uterine cancer, cuticle tumor by laser system that $CO_2$ laser gets into standard in obstetrics and gynecology application. Because effect that super pulse output is ten enemies of laser if uniformity one pulse durations are short almost is decreased, most of all pulse module special quality of pulse style $CO_2$ laser for obstetrics and gynecology mode stabilization by weight very, in this research to get into short pulse duration and higher frequency density, do switching by high frequency in DC-DC Converter output DC's ripple high frequency to be changed, high frequency done current ripple amount of condenser for output filter greatly reduce can. Ripple of output approximately to Zero realization applying possible inductor realization through a special quality experiment do.

  • PDF

Novel Five-Level Three-Phase Hybrid-Clamped Converter with Reduced Components

  • Chen, Bin;Yao, Wenxi;Lu, Zhengyu
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1119-1129
    • /
    • 2014
  • This study proposes a novel five-level three-phase hybrid-clamped converter composed of only six switches and one flying capacitor (FC) per phase. The capacitor-voltage-drift phenomenon of the converter under the classical sinusoidal pulse width modulation (SPWM) strategy is comprehensively analyzed. The average current, which flows into the FC, is a function of power factor and modulation index and does not remain at zero. Thus, a specific modulation strategy based on space vector modulation (SVM) is developed to balance the voltage of DC-link and FCs by injecting a common-mode voltage. This strategy applies the five-segment method to synthesize the voltage vector, such that switching losses are reduced while optional vector sequences are increased. The best vector sequence is then selected on the basis of the minimized cost function to suppress the divergence of the capacitor voltage. This study further proposes a startup method that charges the DC-link and FCs without any additional circuits. Simulation and experimental results verify the validity of the proposed converter, modulation strategy, and precharge method.