• Title/Summary/Keyword: Zero stiffness

Search Result 139, Processing Time 0.026 seconds

A stability factor for structure-dependent time integration methods

  • Shuenn-Yih Chang;Chiu-Li Huang
    • Structural Engineering and Mechanics
    • /
    • v.87 no.4
    • /
    • pp.363-373
    • /
    • 2023
  • Since the first family of structure-dependent methods can simultaneously integrate unconditional stability and explicit formulation in addition to second order accuracy, it is very computationally efficient for solving inertial problems except for adopting auto time-stepping techniques due to no nonlinear iterations. However, an unusual stability property is first found herein since its unconditional stability interval is drastically different for zero and nonzero damping. In fact, instability might occur for solving a damped stiffness hardening system while an accurate result can be obtained for the corresponding undamped stiffness hardening system. A technique of using a stability factor is applied to overcome this difficulty. It can be applied to magnify an unconditional stability interval. After introducing this stability factor, the formulation of this family of structure-dependent methods is changed accordingly and thus its numerical properties must be re-evaluated. In summary, a large stability factor can result in a large unconditional stability interval but also lead to a large relative period error. As a consequence, a stability factor must be appropriately chosen to have a desired unconditional stability interval in addition to an acceptable period distortion.

Stiffness Analysis of a Low-DOF Parallel Manipulator including the Elastic Deformations of Both Joints and Links (ICCAS 2005)

  • Kim, Han-Sung;Shin, Chang-Rok;Kyung, Jin-Ho;Ha, Young-Ho;Yu, Han-Sik;Shim, Poong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.631-637
    • /
    • 2005
  • This paper presents a stiffness analysis method for a low-DOF parallel manipulator, which takes into account of elastic deformations of joints and links. A low-DOF parallel manipulator is defined as a spatial parallel manipulator which has less than six degrees of freedom. Differently from the case of a 6-DOF parallel manipulator, the serial chains in a low-DOF parallel manipulator are subject to constraint forces as well as actuation forces. The reaction forces due to actuations and constraints in each limb can be determined by making use of the theory of reciprocal screws. It is shown that the stiffness model of an F-DOF parallel manipulator consists of F springs related to the reciprocal screws of actuations and 6-F springs related to the reciprocal screws of constraints, which connect the moving platform to the fixed base in parallel. The $6{times}6$ stiffness matrix is derived, which is the sum of the stiffness matrices of actuations and constraints. The six spring constants can be precisely determined by modeling the compliance of joints and links in a serial chain as follows; the link can be considered as an Euler beam and the stiffness matrix of rotational or prismatic joint can be modeled as a $6{times}6$ diagonal matrix, where one diagonal element about the rotation axis or along the sliding direction is zero. By summing the elastic deformations in joints and links, the compliance matrix of a serial chain is obtained. Finally, applying the reciprocal screws to the compliance matrix of a serial chain, the compliance values of springs can be determined. As an example of explaining the procedure, the stiffness of the Tricept parallel manipulator has been analyzed.

  • PDF

The Rearch of Stress Route for Concrete Structure using Advanced Progressive Optimization (개선된 점진적 구조 최적화 기법을 이용한 콘크리트 구조물의 응력경로 탐색)

  • Kim, Shi-Hwan;Yoon, Seong-Soo;Park, Jin-Seon;Jeon, Jeong-Bae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.153-163
    • /
    • 2011
  • This research describe improved algorithm that is able to decide terminal criterion of Evolutionary Structural Optimization (ESO), reducing load of calculation to search load path of concrete beam, and apply to agricultural facilities. The ESO method is that make to discrete structure, structural analyze each element stress through FEM. And repeat generation with next material condition to become for most suitable composing. Individual element introduces concept of zero stiffness, but zero stiffness decisions are gone to direction of exclusion. In this stduy, improve algorithm to be convergence by 'Rule of Alive or Die' in arrival because is most suitable. Also, existing terminal criterion lack consistency because that used depend on experience of researcher. This research procedure is fellowed. First, all modulus of elasticity assume a half of elasticity modulus of material, Second, structural analysis by FEM, Third, apply to the remove ratio and restoration ratio for the 'rule of alive or die'. Forth, reconstruct the element and material conditions. And repeat the first to forth process. The terminal time of evolutional procedure is the all elastic modulus of element changed to blank value or elasticity modulus value of original. Therefore, in this study, consist the algorithm for programming, and apply to the agricultural facilities with concrete.

Dynamic analysis of the agglomerated SiO2 nanoparticles-reinforced by concrete blocks with close angled discontinues subjected to blast load

  • Amnieh, Hassan Bakhshandeh;Zamzam, Mohammad Saber
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.121-128
    • /
    • 2018
  • Three structure-dependent integration methods with no numerical dissipation have been successfully developed for time integration. Although these three integration methods generally have the same numerical properties, such as unconditional stability, second-order accuracy, explicit formulation, no overshoot and no numerical damping, there still exist some different numerical properties. It is found that TLM can only have unconditional stability for linear elastic and stiffness softening systems for zero viscous damping while for nonzero viscous damping it only has unconditional stability for linear elastic systems. Whereas, both CEM and CRM can have unconditional stability for linear elastic and stiffness softening systems for both zero and nonzero viscous damping. However, the most significantly different property among the three integration methods is a weak instability. In fact, both CRM and TLM have a weak instability, which will lead to an adverse overshoot or even a numerical instability in the high frequency responses to nonzero initial conditions. Whereas, CEM possesses no such an adverse weak instability. As a result, the performance of CEM is much better than for CRM and TLM. Notice that a weak instability property of CRM and TLM might severely limit its practical applications.

Remarks on the use of Electric Arc Furnace (EAF) Steel Slag in Asphalt Mixtures for Flexible Pavements (Electric Arc Furnace (EAF) Steel Slag의 아스팔트 포장 혼합물 내 대체 골재로서 적용 가능성에 대한 고찰)

  • Falchetto, Augusto Cannone;Moon, Ki Hoon
    • International Journal of Highway Engineering
    • /
    • v.17 no.1
    • /
    • pp.25-33
    • /
    • 2015
  • PURPOSES : This paper, presents the results of a laboratory study aimed to verify the suitability of a particular type of Electric Arc Furnace (EAF) steel slag to be recycled in the lithic skeleton of both dense graded and porous asphalt mixtures for flexible pavements. METHODS : Cyclic creep and stiffness modulus tests were performed to evaluate the mechanical performance of three different asphalt mixtures (dense graded, porous asphalt, and stone mastic) prepared with two types of EAF steel slag. For comparison purposes, the same three mixtures were also designed with conventional aggregates (basalt and limestone). RESULTS : All the asphalt mixtures prepared with EAF steel slag satisfied the current requirements of the European standards, which support EAF steel slag as a suitable material for flexible pavement construction. CONCLUSIONS : Based on the experimental work, the use of waste material obtained from steel production (e.g. EAF steel slag) as an alternative in the lithic skeleton of asphalt mixtures can be a satisfactory and reasonable choice that fulfills the "Zero Waste" objective that many iron and steel industries have pursued in the past decades.

Impact Analysis of Communication Time Delay and Properties of a Haptic Device on Stability Boundary for a Haptic System with a First-Order Hold (일차홀드 방식을 포함한 햅틱 시스템의 안정성 영역에 대한 통신시간지연과 햅틱장치 물성치의 영향 분석)

  • Lee, Kyungno
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.572-578
    • /
    • 2017
  • Haptic systems help users feel a realistic sensation when they manipulate virtual objects in the remote virtual environment. However, there are communication time delays that may make the haptic system unstable. This paper shows the relationship between communication time delay, properties of a haptic device, and the stability of the haptic system with the first-order hold method in a simulation. The maximum available stiffness of a virtual spring with the first-order hold method is larger than in the zero-order hold method when there is no time delay. However, when the communication time delay is much larger than the sampling time, the maximum available stiffness to guarantee the stability becomes the same, irrespective of the sample-hold methods. Besides, the maximum available stiffness increases in inverse proportion to the communication time delay and in proportional to the damping coefficient of the haptic device.

Quadrant Protrusion error Modeling Through the Identification of Friction (마찰력 규명을 통한 상한절환 오차 모델링)

  • 김민석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.371-376
    • /
    • 1999
  • Stick-slip friction is present to some degree in almost all actuators and mechanisms and is often responsible for performance limitations. Simulation of stick-slip friction is difficult because of strongly nonlinear behavior in the vicinity of zero velocity. A straightforward method for representing and simulating friction effects is presented. True zero velocity sticking is represented without equation reformulation or the introduction of numerical stiffness problems. Stick-slip motion is investigated experimentally, and the fundamental characteristics of the stick-slip motion are clarified. Based on these experimental results, the characteristics of static in the period of stick and kinetic friction in the period of slip are studied concretely so as to clarify the stick-slip process.

  • PDF

The Behavior of Undrained Pore Water Pressure in Normally Consolidated and Saturated Clay(I) - Analysis by Isotropic Loading Test - (포화된 정규압밀 점성토에서 비배수 공극수압의 거동(I) - 등방재하시험에 의한 분석 -)

  • 임성훈;이달원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.4
    • /
    • pp.126-136
    • /
    • 2003
  • The B value on the saturated soil is commonly known as the amount of 1. Usually this concept is consistent with the condition that effective stress is equal to zero, but it was reported in some literatures that the B value was less than 1 in spite of saturated condition in the test of very stiff material such as rock and quasi-stiff material on which the stiffness can be mobilized because of effective stress not equal to zero. In this study the B value was measured on various effective stress conditions on normally consolidated clay. The test results in the B value less than 1 in spite of perfect saturation. The measured excessive pore water pressure was not only smaller than the change of the total stress, but also the function of time on clay.

Buckling and vibration of rectangular plates of variable thickness with different end conditions by finite difference technique

  • Rajasekaran, Sundaramoorthy;Wilson, Antony John
    • Structural Engineering and Mechanics
    • /
    • v.46 no.2
    • /
    • pp.269-294
    • /
    • 2013
  • This paper is concerned with the determination of exact buckling loads and vibration frequencies of variable thickness isotropic plates using well known finite difference technique. The plates are subjected to uni, biaxial compression and shear loadings and various combinations of boundary conditions are considered. The buckling load is found out as the in plane load that makes the determinant of the stiffness matrix equal to zero and the natural frequencies are found out by carrying out eigenvalue analysis of stiffness and mass matrices. New and exact results are given for many cases and the results are in close agreement with the published results. In this paper, like finite element method, finite difference method is applied in a very simple manner and the application of boundary conditions is also automatic.

Design of A Force-Reflecting 3DOF Interface using Phase-Difference Control of Ultrasonic Motors (초음파 모터의 위상차 제어를 이용한 3자유도 힘반영 촉각장치 설계)

  • 오금곤;조진섭;김동옥;김영동;김재민
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.84-87
    • /
    • 1999
  • This paper proposes an interfaces control system to drive a ultrasonic motors(USMs). To touch surfaces and objects created within a virtua environment, the 3 DOF force-reflecting interfaces provides force feedback to users, so to feel touching real things. To effectively display the mechanical impedance of the human hand we need a device with specific characteristics, such as low inertia almost zero friction and very high stiffness. As an actuator for direct drive method, the USMs have many good advantages satisfied these conditions over conventional servo motors. To estimate capability of this interface, we did an experiment. The device works very well, as user are able to detect the edge of the wall and the stiffness of the button.

  • PDF